首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The superoxide dismutase produced by Streptococcus mutans OMZ176 during aerobic growth in a chemically defined medium (modified FMC) that was treated with Chelex 100 (to lower trace metal contamination) and supplemented with high purity manganese was purified (162-fold) by heat treatment, ammonium sulfate precipitation, and chromatofocusing chromatography. The superoxide dismutase produced during aerobic growth in the same medium, but without manganese and supplemented with high purity iron, was similarly purified (220-fold). The molecular masses of each holoenzyme were approximately 43,000 with a subunit mass of 20,700, indicating that the enzymes were dimers of two equally sized subunits. The superoxide dismutase from manganese-grown cells was a manganese enzyme (MnSOD) containing 1.2 atoms of manganese and 0.25 atoms of iron/subunit. The superoxide dismutase from iron-grown cells was an iron enzyme (FeSOD) containing 0.07 atoms of manganese and 0.78 atoms of iron/subunit. The amino acid compositions of the MnSOD and the FeSOD were virtually identical, and their amino-terminal sequences were identical through the first 22 amino acids. Dialysis of the FeSOD with o-phenanthroline and sodium ascorbate generated aposuperoxide dismutase with 94% loss of activity; subsequent dialysis of apoenzyme with either manganese sulfate or ferrous sulfate reconstituted activity (recoveries of 37 and 30%, respectively). Electrophoretic determination of cytoplasmic radioiron distribution indicated that (during aerobic growth) manganese prevented insertion of iron into superoxide dismutase, although the iron levels of at least two other cytoplasmic fractions were not altered by manganese. Therefore, S. mutans used the same aposuperoxide dismutase to form either FeSOD or MnSOD, depending upon which metal was available in the culture medium. Such "cambialistic" enzymes (those capable of making a cofactor substitution) may represent a previously unrecognized family of superoxide dismutases.  相似文献   

2.
3.
We have recently reported the first complete amino acid sequence of an iron-containing superoxide dismutase. The iron enzyme is thought to be closely homologous to the manganese-containing superoxide dismutases. The availability of complete amino acid sequence information for four manganese superoxide dismutases and the crystal structures for two iron and two manganese superoxide dismutases prompted us to investigate the degree of homology between the two proteins at various levels. We report that it is not possible to clearly distinguish the two proteins on the basis of their secondary or tertiary structures. It would appear that a small number of single site substitutions are responsible for conferring distinguishing properties between the two proteins. Substitution of glycine 77 and glutamine 154 by a glutamine and an alanine respectively in Photobacterium leiognathi iron superoxide dismutase may distinguish the kinetic and other particular properties of this protein from the manganese protein (and other iron superoxide dismutases). Furthermore the primary structure of both the iron and manganese proteins does not appear to have any homology with any other known amino acid sequence.  相似文献   

4.
5.
Thirty years ago, it was discovered that 14-3-3 proteins could activate enzymes involved in amino acid metabolism. In the following decades, 14-3-3s have been shown to be involved in many different signaling pathways that modulate cellular and whole body energy and nutrient homeostasis. Large scale screening for cellular binding partners of 14-3-3 has identified numerous proteins that participate in regulation of metabolic pathways, although only a minority of these targets have yet been subject to detailed studies. Because of the wide distribution of potential 14-3-3 targets and the resurging interest in metabolic pathway control in diseases like cancer, diabetes, obesity and cardiovascular disease, we review the role of 14-3-3 proteins in the regulation of core and specialized cellular metabolic functions. We cite illustrative examples of 14-3-3 action through their direct modulation of individual enzymes and through regulation of master switches in cellular pathways, such as insulin signaling, mTOR- and AMP dependent kinase signaling pathways, as well as regulation of autophagy. We further illustrate the quantitative impact of 14-3-3 association on signal response at the target protein level and we discuss implications of recent findings showing 14-3-3 protein membrane binding of target proteins.  相似文献   

6.
Here we show that yeast strains with reduced target of rapamycin (TOR) signaling have greater overall mitochondrial electron transport chain activity during growth that is efficiently coupled to ATP production. This metabolic alteration increases mitochondrial membrane potential and reactive oxygen species (ROS) production, which we propose supplies an adaptive signal during growth that extends chronological life span (CLS). In strong support of this concept, uncoupling respiration during growth or increasing expression of mitochondrial manganese superoxide dismutase significantly curtails CLS extension in tor1Δ strains, and treatment of wild-type strains with either rapamycin (to inhibit TORC1) or menadione (to generate mitochondrial ROS) during growth is sufficient to extend CLS. Finally, extension of CLS by reduced TORC1/Sch9p-mitochondrial signaling occurs independently of Rim15p and is not a function of changes in media acidification/composition. Considering the conservation of TOR-pathway effects on life span, mitochondrial ROS signaling may be an important mechanism of longevity regulation in higher organisms.  相似文献   

7.
Alignment of the amino acid sequence of peptides obtained following digestion of Photobacterium leiognathi iron superoxide dismutase with the known sequence of Bacillus stearothermophilus manganese superoxide dismutase shows that the residues found to form ligands to the manganese are conserved in the iron enzyme. This indicates that the metal ligands in both proteins are identical.  相似文献   

8.
We have previously reported the isolation of the gene coding for a 25-kDa polypeptide present in a purified yeast QH2:cytochrome c oxidoreductase preparation, which was thus identified as the gene for the Rieske iron-sulphur protein [Van Loon et al. (1983) Gene 26, 261-272]. Subsequent DNA sequence analysis reported here reveals, however, that the encoded protein is in fact manganese superoxide dismutase, a mitochondrial matrix protein. Comparison with the known amino acid sequence of the mature protein indicates that it is synthesized with an N-terminal extension of 27 amino acids. In common with the N-terminal extensions of other imported mitochondrial proteins, the presequence has several basic residues but lacks negatively charged residues. The function of these positive charges and other possible topogenic sequences are discussed. Sequences 5' of the gene contain two elements that may be homologous to the suggested regulatory sites, UAS 1 and UAS 2 in the yeast CYC1 gene [Guarente et al. (1984) Cell 36, 503-511]. The predicted secondary structures in manganese superoxide dismutase appear to be very similar to those reported for iron superoxide dismutase, suggesting similar three-dimensional structures. Making use of the known three-dimensional structure of the Fe enzyme, the Mn ligands are predicted.  相似文献   

9.
10.
11.
The primary structure of human liver manganese superoxide dismutase   总被引:8,自引:0,他引:8  
The complete amino acid sequence of manganese superoxide dismutase from human liver was determined. The sequence was deduced following characterization of the peptides obtained from tryptic, chymotryptic, and Staphylococcus aureus digests of the apoprotein. Chemical cleavage with dimethyl sulfoxide-hydrobromic acid was also carried out. The amino acid sequence listed below is made up of 196 amino acids and the two subunit polypeptides in the native enzyme appear to be identical. No homology was observed with copper/zinc containing class of superoxide dismutase. Lys-His-Ser-Leu-Pro-Asp-Leu-Pro-Tyr-Asp-Tyr-Gly-Ala-Leu-Glu-Pro-His-Il e -Asn-Ala-Gln-Ile-Met-Gln-Leu-His-His-Ser-Lys-His-His-Ala-Ala-Tyr-Val-Asn -Asn-Leu-Asn-Val-Thr-Gln-Glu-Lys-Tyr-Gln-Glu-Ala-Leu-Ala-Lys-Gly-Asp-Val -Thr-Ala-Gln-Ile-Ala-Leu-Gln-Pro-Ala-Leu-Lys-Phe-Asn-Gly-Gly-Gly-His-Ile -Asn-His-Ser-Ile-Phe-Trp-Thr-Asn-Leu-Ser-Pro-Asn-Gly-Gly-Gly-Gln-Pro-Lys -Gly-Glu-Leu-Leu-Glu-Ala-Ile-Lys-Arg-Asp-Phe-Gly-Ser-Phe-Asp-Lys-Phe-Lys -Gln-Lys-Leu-Thr-Ala-Ala-Ser-Val-Gly-Val-Gln-Gly-Ser-Gly-Trp-Leu-Gly-Phe -Asn-Lys-Gln-Arg-Gly-His-Leu-Gln-Ile-Ala-Ala-Cys-Pro-Asn-Gln-Asp-Pro-Leu -Gln-Gly-Thr-Thr-Gly-Leu-Ile-Pro-Leu-Leu-Gly-Ile-Asp-Val-Trp-Glu-His-Ala -Tyr-Tyr-Leu-Gln-Tyr-Lys-Asn-Val-Arg-Pro-Asp-Tyr-Leu-Lys-Ala-Ile-Trp-Asn -Val-Ile-Asn-Trp-Glu-Asn-Val-Thr-Glu-Arg-Tyr-Met-Ala-Cys-Lys-Lys.  相似文献   

12.
Chemical carcinogenesis is hypothesized to involve manganese superoxide dismutase and gene amplification. Initiation is hypothesized to be caused by destruction of the DNA that enables the cell to induce manganese superoxide dismutase. Tumor promotion then causes amplification of the manganese superoxide dismutase gene and the cell proliferation gene (oncogene) because of selective pressure exerted by the promoter. Because the promoter causes cell division and chromosomal rearrangements, unequal segregation of the amplified genes results. Because cells which have high amounts of the cell proliferation gene and low amounts of the manganese superoxide dismutase gene grow faster, these cells become dominant and a tumor forms.  相似文献   

13.
14.
Pseudomonas aeruginosa is a strict aerobe which is likely exposed to oxygen reduction products including superoxide and hydrogen peroxide during the metabolism of molecular oxygen. To counterbalance the potentially hazardous effects of elevated endogenous levels of superoxide, most aerobic organisms possess one or more superoxide dismutases or compounds capable of scavenging superoxide. We have previously shown that P. aeruginosa possesses both an iron- and a manganese-cofactored superoxide dismutase (D. J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). In this study, the genes encoding manganese (sodA)- and iron (sodB)- cofactored superoxide dismutase were cloned by using a cosmid library of P. aeruginosa FRD which complemented an Escherichia coli (JI132) strain devoid of superoxide dismutase activity. The sodA and sodB genes of P. aeruginosa, when cloned into a high-copy-number vector (pKS-), partially restored the aerobic growth rate defect, characteristic of the Sod- strain, to that of the wild type (AB1157) when grown in Luria broth. The nucleotide sequences of sodA and sodB have open reading frames of 612 and 579 bp that encode dimeric proteins of 22.9 and 21.2 kDa, respectively. These data were also supported by the results of in vitro expression studies. The deduced amino acid sequence of the P. aeruginosa manganese and iron superoxide dismutase revealed approximately 50 and 67% similarity with manganese and iron superoxide dismutases from E. coli, respectively. There was also remarkable similarity with iron and manganese superoxide dismutases from other phyla. The mRNA start site of sodB was mapped to 174 bp upstream of the ATG codon. A likely promoter with similarity to the -10 and -35 consensus sequence of E. coli was observed upstream of the ATG start codon of sodB. Regions sequenced 519 bp upstream of the sodA electrophoresis, sodA gene revealed no such promoter, suggesting an alternative mode of control for sodA. By transverse field electrophoresis, sodA and sodB were mapped to the 71- to 75-min region on the P. aeruginosa PAO1 chromosome. Strikingly, mucoid alginate-producing bacteria generated greater levels of manganese superoxide dismutase than nonmucoid revertants, suggesting that mucoid P. aeruginosa is responding to oxidative stress and/or changes in the redox status of the cell.  相似文献   

15.
16.
When cells are starved of their substrate, many nutrient transporters are induced. These undergo rapid endocytosis and redirection of their intracellular trafficking when their substrate becomes available again. The discovery that some of these transporters also act as receptors, or transceptors, suggests that at least part of the sophisticated controls governing the trafficking of these proteins has to do with their signaling function rather than with control of transport. In yeast, the general amino acid permease Gap1 mediates signaling to the protein kinase A pathway. Its endocytic internalization and intracellular trafficking are subject to amino acid control. Other nutrient transceptors controlling this signal transduction pathway appear to be subject to similar trafficking regulation. Transporters with complex regulatory control have also been suggested to function as transceptors in other organisms. Hence, precise regulation of intracellular trafficking in nutrient transporters may be related to the need for tight control of nutrient-induced signaling.  相似文献   

17.
18.
彭竹清  郝友进 《昆虫学报》2019,62(12):1359-1368
【目的】本研究旨在调查葱蝇Delia antiqua夏滞育蛹体内DaFOXO1对超氧化物歧化酶(SOD)基因表达及蛹发育历期的调控作用。【方法】从葱蝇转录组数据中鉴定DaFOXO1下游铜锌超氧化物歧化酶基因DaCu/Zn SOD和锰超氧化物歧化酶基因DaMn SOD;利用生物信息学工具对DaCu/Zn SOD和DaMn SOD的氨基酸序列特征、亚细胞定位和系统发育关系进行分析。通过qRT-PCR方法分析DaFOXO1, DaCu/Zn SOD和DaMn SOD基因在葱蝇夏滞育蛹不同发育阶段的表达特点;进一步分析DaFOXO1基因被干扰后,葱蝇夏滞育蛹中DaCu/Zn SOD和DaMn SOD基因的表达特点、酶活性变化及对葱蝇夏滞育蛹发育历期的影响。【结果】鉴定到的葱蝇DaCu/Zn SOD(GenBank登录号: KR072551)的开放阅读框长459 bp,编码153个氨基酸,预测蛋白分子量为22.4 kD,等电点为6.44,属于细胞质型铜锌超氧化歧化酶;DaMn SOD(GenBank登录号: KR072549)的开放阅读框长648 bp,编码216个氨基酸,预测蛋白分子量为24.4 kD,等电点为8.85,属于线粒体型锰超氧化物歧化酶。氨基酸序列比对结果显示,DaCu/Zn SOD和DaMn SOD与其他10种双翅目昆虫的同源蛋白有75%~94%的氨基酸序列一致性,且具有典型的SOD家族序列特征;系统发育分析显示它们与铜绿蝇Lucilia cuprina同源蛋白形成高支持率的一支。qRT-PCR分析表明,DaFOXO1基因在滞育前期和滞育后期的表达量较高,而在滞育期的表达量低; DaCu/Zn SOD基因在滞育期和滞育后期呈高表达;但DaMn SOD基因在滞育前期和滞育期的表达量最高,在滞育后期次之。干扰DaFOXO1可显著抑制DaCu/Zn SOD和DaMn SOD的基因表达及相应酶活性,并能明显延长夏滞育蛹的滞育期。【结论】结果说明,DaCu/Zn SOD和DaMn SOD是FOXO1信号网络中的重要成员;DaFOXO1对葱蝇夏滞育蛹蛹期有重要调控作用。  相似文献   

19.
A gene encoding a manganese superoxide dismutase (MnSOD) enzyme (Mi-mnsod) was identified and characterized in second-stage juveniles of the root-knot nematode Meloidogyne incognita. The Mi-mnsod gene was found to possess five exons and four introns with (GT/AG) consensus splice-site junctions. The deduced amino acid sequence of Mi-mnsod encodes a putative 25 KDa protein, with conserved amino acid residues of the MnSOD family, including the Parker-Blake signature and four metal-binding sites. The derived amino acid sequence showed high similarity to other eukaryotic MnSODs, including a 23 amino acid N-terminal putative mitochondrial transit peptide. Gene expression was observed throughout the posterior nematode body region with elevated signal intensities at the anterior portion of the intestine. DNA blot analysis and sequencing data showed the occurrence of three putative copies of the MnSOD gene with nucleotide polymorphisms found at the fourth exon and the 3' un-translated region.  相似文献   

20.
Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interaction between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号