首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Alveolar macrophages regain their normal volume after swelling in hypo-osmotic solutions. This process, termed regulatory volume decrease (RVD), is initiated 3-5 minutes after exposure of cells to hypo-osmotic solutions, and by 30 min, near-normal volumes are attained. Volume decrease does not occur at 0 degrees C or in solutions in which Na+ has been replaced by K+, or Cl- by the impermeant anion gluconate. These results, as well as direct measurement of intracellular cations, indicate that decreases in cell volume result primarily from the loss of K+ and Cl- and are similar to RVD in lymphocytes. Kinetic analysis of cation loss, both by directly measuring changes in intracellular cation content and by assaying rubidium efflux, showed that cation loss occurred immediately upon media dilution. The rate of cation loss fit first-order kinetics and preceded both the initiation of volume decrease and the maximum increase in surface receptor number. These results suggest that the cation transporters responsible for RVD are located at the cell surface and that regulation of activity is not dependent on alterations in membrane movement.  相似文献   

8.
9.
Volume regulation is essential for normal cell function. A key component of the cells' response to volume changes is the activation of a channel, which elicits characteristic chloride currents (I(Cl, Swell)). The molecular identity of this channel has been controversial. Most recently, ClC-3, a protein highly homologous to the ClC-4 and ClC-5 channel proteins, has been proposed as being responsible for I(Cl, Swell). Subsequently, however, other reports have suggested that ClC-3 may generate chloride currents with characteristics clearly distinct from I(Cl, Swell). Significantly different tissue distributions for ClC-3 have also been reported, and it has been suggested that two isoforms of ClC-3 may be expressed with differing functions. In this study we generated a series of cell lines expressing variants of ClC-3 to rigorously address the question of whether or not ClC-3 is responsible for I(Cl, Swell). The data demonstrate that ClC-3 is not responsible for I(Cl, Swell) and has no role in regulatory volume decrease, furthermore, ClC-3 is not activated by intracellular calcium and fails to elicit chloride currents under any conditions tested. Expression of ClC-3 was shown to be relatively tissue-specific, with high levels in the central nervous system and kidney, and in contrast to previous reports, is essentially absent from heart. This distribution is also inconsistent with the previous proposed role in cell volume regulation.  相似文献   

10.
11.

Introduction  

Elevated serum high sensitivity C-reactive protein (hsCRP) has been reported in established osteoarthritis (OA). The aim of this study was to determine whether serum levels of hsCRP are associated with the variation in tibial and patella cartilage volumes in women without evidence of OA.  相似文献   

12.
13.
14.
15.
16.

Background

High urine volume enhances urinary free cortisol (UFF) and cortisone (UFE) excretion rates in normal-weight adults and children. Renal excretion rates of glucocorticoids (GC) and their metabolites are frequently altered in obesity. The aim of the present study was to investigate whether UFF and UFE excretion is also affected by urine volume in severely obese subjects.

Experimental

In 24-h urine samples of 59 extremely obese subjects (mean BMI 45.3 ± 8.9 kg/m2) and 20 healthy lean subjects (BMI 22.1 ± 1.8 kg/m2), UFF and UFE, tetrahydrocortisol (THF), 5α-tetrahydrocortisol (5α-THF), and tetrahydrocortisone (THE) were quantified by RIA. The sum of THF, 5α-THF, and THE (GC3), the three major GC metabolites, reflects daily cortisol secretion. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity was assessed by the ratio UFE/UFF. Daily GC excretion rates were corrected for urine creatinine and adjusted for gender and body weight.

Results

In extremely obese subjects, urine volume was significantly associated with creatinine-corrected UFE and 11β-HSD2 activity after adjustment for gender and BMI (r = 0.47, p = 0.0002 and r = 0.31, p = 0.02, respectively). However, urine volume was not associated with creatinine-corrected UFF and GC3 (p = 0.4 and p = 0.6, respectively). In lean controls, urine volume was significantly associated with creatinine-corrected UFE and UFF (r = 0.58, p = 0.01 and r = 0.55, p = 0.02, respectively), whereas urine volume was not associated with 11β-HSD2 activity after appropriate adjustment (p = 0.3).

Conclusions

In severe obesity, in contrast to normal weight, renal excretion of UFE, but not of UFF is affected by fluid intake. This discrepancy may be due to the increased renal 11β-HSD2 activity in obesity.  相似文献   

17.
18.
19.
20.

Introduction

We evaluated the associations between bone marrow lesion (BML) volume change and changes in periarticular bone mineral density (paBMD) as well as subchondral sclerosis to determine whether BML change is associated with other local bone changes.

Methods

The convenience sample comprised participants in the Osteoarthritis Initiative (OAI) with weight-bearing posterior-anterior knee radiographs and magnetic resonance images (MRIs) at the 24- and 48-month visits and dual-energy x-ray absorptiometry (DXA) at the 30-/36-month and 48-month visits. The right knee was assessed unless contraindicated for MRI. We used knee DXA scans to measure medial tibia paBMD and medial/lateral paBMD ratio (M:L paBMD). Knee radiographs were scored for sclerosis (grades 0 to 3) in the medial tibia. Two raters determined BML volume on sagittal fat-suppressed MRI by using a semiautomated segmentation method. To focus on knees with only medial tibia BML changes, knees with lateral tibial BMLs were excluded. Medial tibial BML volume change was classified into three groups: BML regression (lowest quartile of medial tibial BML volume change), no-to-minimal change (middle two quartiles), and BML progression (highest quartile). We used proportional odds logistic regression models to evaluate the association between quartiles of changes in medial paBMD or M:L paBMD ratio, as outcomes, and BML volume change.

Results

The sample (n = 308) included 163 (53%) female subjects, 212 (69%) knees with radiographic osteoarthritis, and participants with a mean age of 63.8 ± 9.3 years and mean body mass index of 29.8 ± 4.7 kg/m2. We found an association between greater increases in medial tibia paBMD and BML regression (OR = 1.7 (95% confidence interval (CI) = 1.1 to 2.8)) and a similar trend for BML progression (OR = 1.6 (95% CI = 1.0 to 2.6]). We also detected associations between greater increase in M:L paBMD and BML regression (OR = 1.6 (95% CI = 1.0 to 2.7]) and BML progression (OR = 1.8 (95% CI = 1.1 to 3.0)), although BML regression had borderline statistical significance. The frequency of sclerosis progression in the medial tibia (n = 14) was greater among knees with BML progression or regression compared with knees without BML change (P = 0.01 and P = 0.04, respectively).

Conclusion

BML regression and BML progression are characterized by concurrent increases in paBMD and sclerosis, which are characteristic of increased radiographic osteoarthritis severity. At least during 24 months, BML regression is not representative of improvement in other periarticular bone measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号