首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of an antigenic determinant in a protein   总被引:179,自引:0,他引:179  
The immunogenic and antigenic determinants of a synthetic peptide and the corresponding antigenic determinants in the parent protein have been elucidated. Four determinants have been defined by reactivity of a large panel of antipeptide monoclonal antibodies with short, overlapping peptides (7-28 amino acids), the immunizing peptide (36 amino acids), and the intact parent protein (the influenza virus hemagglutinin, HA). The majority of the antipeptide antibodies that also react strongly with the intact protein recognize one specific nine amino acid sequence. This immunodominant peptide determinant is located in the subunit interface in the HA trimeric structure. The relative inaccessibility of this site implies that antibody binding to the protein is to a more unfolded HA conformation. This antigenic determinant differs from those previously described for the hemagglutinin and clearly demonstrates the ability of synthetic peptides to generate antibodies that interact with regions of the protein not immunogenic or generally accessible when the protein is the immunogen.  相似文献   

2.
Expression vectors based on DNA or plus-stranded RNA viruses are being developed as vaccine carriers directed against various pathogens. Less is known about the use of negative-stranded RNA viruses, whose genomes have been refractory to direct genetic manipulation. Using a recently described reverse genetics method, we investigated whether influenza virus is able to present antigenic structures from other infectious agents. We engineered a chimeric influenza virus which expresses a 12-amino-acid peptide derived from the V3 loop of gp120 of human immunodeficiency virus type 1 (HIV-1) MN. This peptide was inserted into the loop of antigenic site B of the influenza A/WSN/33 virus hemagglutinin (HA). The resulting chimeric virus was recognized by specific anti-V3 peptide antibodies and a human anti-gp120 monoclonal antibody in both hemagglutination inhibition and neutralization assays. Mice immunized with the chimeric influenza virus produced anti-HIV antibodies which were able to bind to synthetic V3 peptide, to precipitate gp120, and to neutralize MN virus in human T-cell culture system. In addition, the chimeric virus was also capable of inducing cytotoxic T cells which specifically recognize the HIV sequence. These results suggest that influenza virus can be used as an expression vector for inducing both B- and T-cell-mediated immunity against other infectious agents.  相似文献   

3.
Y Paterson 《Biochemistry》1985,24(4):1048-1055
Two regions of rodent cytochrome c, one within the first four residues of the molecule, which is N-acetylated, and one at a beta bend around residue 44, are known to be immunogenic and antigenic in rabbits. Using sequential peptide synthesis, we have determined the residues required for linear synthetic peptides within these sequences to bind to antibody raised in rabbits to intact rat cytochrome c. The residues that were important in binding the N-terminal peptides were N-acetylglycine at position 1 and valine at position 3. The smallest peptide sequence around residue 44 that would bind to antibodies was Gln-Ala-Ala-Gly-Phe. A theoretical conformational analysis of these peptides showed that the amino-terminal tetrapeptide adopts a wide statistical ensemble of conformational states and that the addition of residues beyond 41 and 45 in the other sequence does not appear to stabilize longer peptides in the native beta-bend conformation. Thus, the antigenicity conferred by Phe-46 and Gln-42 in this peptide is most likely due to the direct interaction of the side chains of these residues with the antibody binding site. The demonstration here that native conformation is not essential for antigenic peptides to bind to antibodies raised against the whole protein indicates that the association energy between antigen and antibody can be sufficient to induce conformation in conformationally flexible peptides. This supports the concept that anti-protein and anti-peptide antibodies may invoke conformational changes in cross-reactive protein antigens and may explain why longer peptides, which may adopt stable nonnative secondary structure, often do not bind to antibodies raised to the whole molecule.  相似文献   

4.
The hybrid gene of influenza virus hemagglutinin (HA) of the H1-subtype, carrying the sequence coding for the fragment of H3-subtype antigenic site B, was constructed. The product of expression of this gene in E. coli was obtained as a fusion protein with beta-galactosidase. The chimeric protein was shown to retain the antigenic properties of HA of H1-subtype and to interact specifically with antibodies against the synthetic peptide corresponding to the B site fragment of HA of the H3-subtype.  相似文献   

5.
During antigenic drift in influenza viruses, changes in antigenicity are associated with changes in amino acid sequence of the large hemagglutinin polypeptide, HA1. In ten variants of Hong Kong (H3N2) influenza virus selected with monoclonal antibodies, the proline residue at position 143 in HA1 changed to serine, threonine, leucine or histidine. In other variants, asparagine 133 changed to lysine, glycine 144 to aspartic acid and serine 145 to lysine. All these changes are possible by single base changes in the RNA except the last, which requires a double base change. Residues 142 to 146 also changed in field strains of Hong Kong influenza isolated between 1968 and 1977 (Laver et al., 1980). The single amino acid sequence changes in HA1 of the monoclonal variants were detected by comparing the compositions of the soluble tryptic peptides from the variants with the known sequences of these peptides from wild-type virus. Two insoluble tryptic peptides, comprising residues 110 to 140 and 230 to 255 in the HA1 molecule, were not examined and we do not know if additional changes occurred in these regions.In order to determine whether sequential changes at the same position occurred during antigenic drift, antibody prepared against the new antigenic site on the variants in which proline 143 changed to histidine or threonine was used to select second generation variants of these variants. In the first case, the glycine residue (144) next to the histidine changed to aspartic acid, and in the second, the threonine residue at position 143 reverted to proline and the virus regained the antigenicity of wild-type.Although monoclonal antibodies revealed dramatic antigenic differences between the variants and wild-type virus, only those variants with changes at position 144 of glycine to aspartic acid or at position 145 of serine to lysine could be distinguished from wild-type virus using heterogeneous rabbit or ferret antisera. The other variants, including those which showed sequence changes in widely separated positions of HA1, could not be distinguished from wild-type with heterogeneous antisera.These findings suggest that sequence changes in the region comprising residues 142 to 146 of HA1 affect an important antigenic site on the hemagglutinin molecule, but how these changes affect the antigenic properties, or whether this region actually forms part of the antigenic site is not known.  相似文献   

6.
The influenza virus hemagglutinin contains four major regions that are recognized by antibodies able to neutralize viral infectivity. To investigate the effect of an antibody response directed against each of these sites on viral evolution, influenza virus A/PR/8/34 (H1N1) was grown in allantois-on-shell cultures in the presence of a mixture of monoclonal antihemagglutinin antibodies. This selection mixture contained antibodies (two or three antibodies per antigenic site) whose concentrations were adjusted to achieve equal neutralization titers against each of the four antigenic sites. By varying the ratio of input virus to selection mixture concentration, we observed that variant viruses emerged under conditions of partial neutralization. Each of the four variants characterized in detail differed from the parental virus in its interaction with cellular receptors and exhibited minimal changes in antigenicity. Thus, these variants were virtually indistinguishable from wild-type viruses, as assessed by the binding of 103 monoclonal antihemagglutinin antibodies in an indirect radioimmunoassay. Despite this, many of the same antibodies demonstrated decreased titers to the variants in hemagglutination inhibition tests. The magnitude of the differences depended on the indicator erythrocytes used (much greater differences were detected with chicken erythrocytes than with human erythrocytes). Hemagglutination mediated by the variants was more resistant to neuraminidase treatment of erythrocytes than hemagglutination mediated by the parental virus. These findings are consistent with the idea that the variants were initially selected by virtue of their increased avidity for host cell receptors. Sequencing of viral RNA revealed that each of the variants differed from the parental virus by a single amino acid alteration in its HA1 subunit. Two of the changes were close to the proposed receptor binding site on hemagglutinin and could directly alter receptor binding, while a third was located near the trimer interface and may have increased receptor binding by altering monomer-monomer interactions.  相似文献   

7.
The coronavirus spike protein S is responsible for important biological activities including virus neutralization by antibody, cell attachment, and cell fusion. Recently, we have elucidated the amino acid sequence of an S determinant common in murine coronaviruses (W. Luytjes, D. Geerts, W. Posthumus, R. Meloen, and W. Spaan, J. Virol. 63:1408-1412, 1989). A monoclonal antibody directed to this determinant (MAb 5B19.2) protected mice against acute fatal infection. In this study, BALB/c mice were immunized with a synthetic peptide of 13 amino acids corresponding to the binding site of MAb 5B19.2, which was either extended with an amino acid sequence of influenza virus hemagglutinin or conjugated to keyhole limpet hemocyanin. Both immunogens induced S-specific antibodies in mice, but only the hemagglutinin-peptide construct protected them against lethal challenge. In contrast to mouse hepatitis virus type 4 (MHV-4), MHV-A59 was not neutralized in vitro by MAb 5B19.2. Neither MHV-A59 nor MHV-4 was neutralized in vitro by antibodies comprising by the synthetic peptides. Our results demonstrated that antibodies elicited with a synthetic peptide comprising a B-cell epitope and a T-helper cell determinant can protect mice against an acute fetal mouse hepatitis virus infection.  相似文献   

8.
We used a panel of monoclonal antibodies to H9 hemagglutinin to select 18 escape mutants of mouse-adapted influenza A/Swine/Hong Kong/9/98 (H9N2) virus. Cross-reactions of the mutants with the antibodies and the sequencing of hemagglutinin genes revealed two minimally overlapping epitopes. We mapped the amino acid changes to two areas of the recently reported three-dimensional structure of A/Swine/Hong Kong/9/98 hemagglutinin. The grouping of the antigenically relevant amino acid positions in H9 hemagglutinin differs from the pattern observed in H3 and H5 hemagglutinins. Several positions in site B of H3 hemagglutinin are distributed in two sites of H9 hemagglutinin. Unlike any subtype analyzed so far, H9 hemagglutinin does not contain an antigenic site corresponding to site A in H3 hemagglutinin. Positions 145 and 193 (H3 numbering), which in H3 hemagglutinin belong to sites A and B, respectively, are within one site in H9 hemagglutinin. This finding is consistent with the peculiarity of the three-dimensional structure of the H9 molecule, that is, the absence from H9 hemagglutinin of the lateral loop that forms site A in H3 and the equivalent site in H5 hemagglutinins. The escape mutants analyzed displayed phenotypic variations, including decreased virulence for mice and changes in affinity for sialyl substrates. Our results demonstrate a correlation between intersubtype differences in three-dimensional structure and variations among subtypes in the distribution of antigenic areas. Our findings also suggest that covariation and pleiotropic effects of antibody-selected mutations may be important in the evolution of H9 influenza virus, a possible causative agent of a future pandemic.  相似文献   

9.
Xu W  Han L  Lin Z 《PloS one》2011,6(3):e18016
The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins.  相似文献   

10.
We describe here four synthetic peptides derived from the hemagglutinin of measles virus. The peptides were predicted by a computer program combining hydrophilicity, flexibility, surface probability, secondary structure and antigenic index parameters of the amino acid sequence of measles virus hemagglutinin. Rabbits were immunized with the synthesized peptides conjugated to purified protein derivative using immunostimulating complex as adjuvant. Anti-peptide antisera raised in rabbits against the peptide conjugates reacted well with the homologous peptides and with measles virus antigen as tested with plate ELISA. None of these sera had either neutralizing or hemagglutination inhibiting antibody or reacted with measles hemagglutinin protein in Western blot and reacted weakly in immunofluorescence. Human sera positive for measles virus antibody reacted with the synthesized peptides indicating that the selected locations function as partial antigenic sites.  相似文献   

11.
Antibodies raised against the synthetic peptide corresponding to the carboxy-terminal 24 amino acids (305-328) of the heavy chain of the hemagglutinin molecule of influenza virus A/X-31 (H3) bind this peptide at three antigenic sites. These sites were identified by assaying binding of polyclonal BALB/c mouse antipeptide sera to the complete set of all possible di-, tri, tetra-, penta-, hexa-, hepta-, and octapeptides homologous with the 24-residue sequence. Individual epitopes were defined and essential residues identified by testing the binding of monoclonal antibodies to sets of peptide analogues in which every one of the homologous residues was replaced in turn by each of the 19 alternative genetically coded amino acids. The immunodominant epitope was shown to be a linear sequence of five amino acids, 314LKLAT318. Replacement of any one of these residues with any other amino acid resulted in loss of antibody binding, indicating that all five are essential to the interaction and that they are probably contact residues. Another antigenic site contains at least two overlapping epitopes: polyclonal sera recognize predominantly an epitope or epitopes encompassed by the linear sequence 320MRNVPEKQT328, whereas the epitope defined by a particular monoclonal antibody comprises the seven amino acids 322NVPEKQT328, of which N322, E325, and Q327 were implicated as contact residues.  相似文献   

12.
Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.  相似文献   

13.
In this paper we undertake an analysis of the antigenicity of influenza A virus hemagglutinin. We developed a novel computational approach to the identification of antigenically active regions and showed that the amino acid substitutions between successive predominant seasonal strains form clusters that are consistent, in terms of both their location and their size, with the properties of B-cell epitopes in general and with those epitopes that have been identified experimentally in influenza A virus hemagglutinin to date. Such an interpretation provides a biologically plausible framework for an understanding of the location of antigenically important substitutions that is more specific than the canonical "antigenic site" model and provides an effective basis for deriving models that predict antigenic escape in the H3N2 subtype. Our results support recent indications that antibodies binding to the "stalk" region of hemagglutinin are found in the human population and exert evolutionary pressure on the virus. Our computational approach provides a possible method for identifying antigenic escape through evolution in this region, which in some cases will not be identified by the hemagglutinin inhibition assay.  相似文献   

14.
Previously we identified the highly conserved amino acids Glu-Leu-Asp-Lys-Trp-Ala (ELDKWA) on the ecto-domain of gp41 as the epitope of a neutralizing monoclonal antibody (2F5) directed against human immunodeficiency virus type 1. In the present study, the sequence defining the epitope was introduced into the loop of antigenic site B of the influenza virus hemagglutinin. The resulting chimeric virus was able to elicit ELDKWA-specific immunoglobulins G and A in antisera of mice. Moreover, the distantly related human immunodeficiency virus type 1 isolates MN, RF, and IIIB were neutralized by these antisera. These data suggest that this conserved B-cell epitope is a promising candidate for inclusion in a vaccine against AIDS. The results also show that influenza virus can be used to effectively present the antigenic structure of this B-cell epitope.  相似文献   

15.
We have recently designed a host-guest peptide system that allows us to quantitatively measure the energetics of interaction of viral fusion peptides with lipid bilayers. Here, we show that fusion peptides of influenza hemagglutinin reversibly associate with one another at membrane surfaces above critical surface concentrations, which range from one to five peptides per 1000 lipids in the systems that we investigated. It is further demonstrated by using circular dichroism and Fourier transform infrared spectroscopy that monomeric peptides insert into the bilayers in a predominantly alpha-helical conformation, whereas self-associated fusion peptides adopt predominantly antiparallel beta-sheet structures at the membrane surface. The two forms are readily interconvertible and the equilibrium between them is determined by the pH and ionic strength of the surrounding solution. Lowering the pH favors the monomeric alpha-helical conformation, whereas increasing the ionic strength shifts the equilibrium towards the membrane-associated beta-aggregates. The binding data are interpreted in terms of a cooperative binding model that yields free energies of insertion and free energies of self-association for each of the peptides studied at pH 7.4 and pH 5. At pH 5 and 35 mM ionic strength, the insertion energy of the 20 residue influenza hemagglutinin fusion peptide is -7.2 kcal/mol and the self-association energy is -1.9 kcal/mol. We propose that self-association of fusion peptides could be a major driving force for recruiting a small number of hemagglutinin trimers into a fusion site.  相似文献   

16.
H3N2 influenza viruses have now circulated in the human population for 43 years since the pandemic of 1968, accumulating sequence changes in the hemagglutinin (HA) and neuraminidase (NA) that are believed to be predominantly due to selection for escape from antibodies. Examination of mutations that persist and accumulate led to identification of antigenically significant mutations that are contained in five antigenic sites (A-E) mapped on to the H3 HA. In early H3N2 isolates, antigenic site A appeared to be dominant while in the 1990s site B seemed more important. To obtain experimental evidence for dominance of antigenic sites on modern H3 HAs, we have measured antibodies in plasma of human subjects who received the 2006-07 trivalent subunit influenza vaccine (H3 component A/Wisconsin/67/05) or the 2008-09 formulation (H3 component A/Uruguay/716/07). Plasmas were tested against expressed HA of Wisconsin-like influenza A/Oklahoma/309/06 and site-directed mutants in antigenic site A (NNES121-124ITEG, N126T, N133D, TSSS135-138GSNA, K140I, RSNNS142-146PGSG), and antigenic site B (HL156-157KS, KFK158-160GST, NDQI189-192QEQT, A196V). "Native ELISA" analysis and escape mutant selection with two human monoclonal antibodies demonstrated that antibody E05 binds to antigenic site A and 1_C02 binds to site B. We find that most individuals, after vaccination in seasons 2006-07 and/or 2008-09, showed dominance of antigenic site B recognition over antigenic site A. A minority showed dominance of site A in 2006 but these were reduced in 2008 when the vaccine virus had a site A mutation. A better understanding of immunodominance may allow prediction of future antigenic drift and assist in vaccine strain selection.  相似文献   

17.
The three-dimensional structures of the Fab fragment of a neutralizing antibody raised against a foot-and-mouth disease virus (FMDV) of serotype C1, alone and complexed to an antigenic peptide representing the major antigenic site A (G-H loop of VP1), have been determined. As previously seen in a complex of the same antigen with another antibody which recognizes a different epitope within antigenic site A, the receptor recognition motif Arg-Gly-Asp and some residues from an adjacent helix participate directly in the interaction with the complementarity-determining regions of the antibody. Remarkably, the structures of the two antibodies become more similar upon binding the peptide, and both undergo considerable induced fit to accommodate the peptide with a similar array of interactions. Furthermore, the pattern of reactivities of five additional antibodies with versions of the antigenic peptide bearing amino acid replacements suggests a similar pattern of interaction of antibodies raised against widely different antigens of serotype C. The results reinforce the occurrence of a defined antigenic structure at this mobile, exposed antigenic site and imply that intratypic antigenic variation of FMDV of serotype C is due to subtle structural differences that affect antibody recognition while preserving a functional structure for the receptor binding site.  相似文献   

18.
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.  相似文献   

19.
Identifying major antigenic and protective epitopes of the H7 hemagglutinin (HA) will be important for understanding the antibody response to vaccines developed against the novel influenza H7N9 viruses that emerged in China in 2013. To facilitate antigenic characterization of the H7N9 HA and to develop reagents for evaluation of H7N9 candidate vaccines, we generated a panel of murine monoclonal antibodies (mAbs) to the HA of A/Shanghai/2/2013 using mammalian cell-derived virus-like particles (VLP) containing the H7 HA. Neutralizing antibodies identified an HA epitope corresponding to antigenic site A on the structurally similar influenza H3 hemagglutinin. Importantly, the neutralizing antibodies protect against A/Shanghai/2/2013 challenge. This antigenic site is conserved among many H7 viruses, including strains of both Eurasian and North American lineage, and the isolated neutralizing antibodies are cross-reactive with older H7 vaccine strains. The results indicate that the identified antigenic site is a potentially important protective epitope and suggest the potential benefit of cross-reactive antibody responses to vaccination with H7 candidate vaccines.  相似文献   

20.
The structure of a complex of influenza hemagglutinin (HA) with a neutralizing antibody shows that the antibody binds to HA at a distance from the virus receptor binding site. Comparison of the properties of this antibody and its Fab with those of an antibody that recognizes an epitope overlapping the receptor binding site leads to two main conclusions. First, inhibition of receptor binding is an important component of neutralization. Second, the efficiency of neutralization by the antibodies ranks in the same order as their avidities for HA, and their large size makes these antibodies highly efficient at neutralization, regardless of the location of their epitope in relation to the virus receptor binding site. These observations provide rationales for the range of antibody specificities that are detected in immune sera and for the distribution of sequence changes on the membrane-distal surface of influenza HAs that occur during 'antigenic drift.'  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号