首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozonolysis was used to obtain polyols with terminal primary hydroxyl groups and different functionalities from trilinolein (or triolein), low-saturation canola oil, and soybean oil. The functionality of the model polyol from triolein (trilinolein) was 3.0 and that of soy polyol was 2.5, due to the presence of unreactive saturated fatty acids, while canola gave a polyol with a functionality of 2.8. All polyols exhibited a high tendency to crystallize at room temperature. The resulting waxes had melting points comparable to that of paraffin and very low viscosities in the liquid state. The polyols were cross-linked using 4,4'-methylenebis(phenyl isocyanate) to give polyurethanes. Glass transitions (T(g)) for the model-, canola-, and soy-based polyurethanes were 53, 36, and 22 degrees C, respectively. The about 30 degrees C lower T(g) of the soy-based polyurethane than that of the model polyurethane was the result not only of lower functionality but also of the presence of saturated fatty acids in the former. Polyurethane from the canola polyol had intermediate cross-linking density and properties. These polyurethanes displayed excellent mechanical properties and higher glass transition temperatures compared to polyurethanes from epoxidized and hydroformylated polyols of the same functionality, presumably due to the absence or lower content of dangling chains in the former.  相似文献   

2.
Polyurethane (PU) foams were prepared using a palm oil-based polyol (PO-p). At the first stage, palm oil was converted to monoglycerides as a new type of polyol by glycerolysis. A yield of the product reached 70% at reaction temperature of 90 degrees C by using an alkali catalyst and a solvent. At the second stage, PU foams were prepared from mixtures of the polyol and polyethylene glycol (PEG) or diethylene glycol (DEG) and an isocyanate compound. Characterization of the foams was carried out by thermal and mechanical analyses. The analyses showed that the chain motion of polyurethane becomes more flexible at the higher PO-p content in the whole polymer, which indicates that the monoglyceride molecules work as soft segments. The study here may lead to a development of a new type of polyurethane foams using palm oil as a raw material.  相似文献   

3.
The purpose of this study was to investigate the effects of various presowing treatments on the germinability (final germination percentage) and germination rate of loquat seeds in order to increase seedling production in nurseries (applied research) as well as provide answers for important physiological issues related to loquat seeds and their seed coat (basic research). Three experiments were carried out with various pre-sowing treatments. These treatments included full or partial removal of seed coat (perisperm), partial cutting of cotyledons as well as moist chilling at 5°C for 13 days and/or soaking the seeds in water or 250 ppm gibberellic acid (GA3) solution for 24 h. According to the results, cotyledons excision resulted in delayed germination, regardless of the presence or absence of the seed coat in comparison with the decoated seeds that demonstrated the highest germination rate amongst them. In addition, even the partial excision of seed coats affected positively both the germinability and the germination rate, compared to the control-intact seeds. Furthermore, control-intact seeds had a higher germination percentage when exposed to moist chilling independently of the application or not of gibberellin; while the combination of gibberellin application and moist chilling improved both the percentage and the rate of germination of decoated seeds. In conclusion, the role of perisperm (seed coat) in the germination procedure of loquat seeds seems to be important, indicating the existence of seed coat-imposed dormancy on loquat seeds. Finally, the existence of a mild endogenous embryo-dormancy on loquat is also discussed.  相似文献   

4.
曼陀罗种子休眠机理与破眠方法研究   总被引:6,自引:0,他引:6  
通过对曼陀罗种子生活力测定、发芽试验、吸水率测定及种子萌发抑制物研究,揭示曼陀罗种子休眠机理,并利用物理、化学法处理曼陀罗种子,以探寻打破曼陀罗种子休眠的最佳方法.结果表明:(1)新采收的曼陀罗种子为综合休眠,休眠原因包括:种皮障碍、缺少萌发所需激素以及种皮和种仁中存在萌发抑制物,其中种皮障碍是限制种子萌发的首要因素.(2)室温存储6个月可解除曼陀罗种子种仁的休眠,但种皮障碍始终是其种子萌发的限制因素.(3)机械摩擦、浓H2SO4处理和NaOH处理均可打破除曼陀罗种皮的休眠障碍,促进种子萌发,其中用10% NaOH处理90 min为破除曼陀罗种皮休眠障碍的最佳方法,且发芽率比对照提高了83%.  相似文献   

5.
Summary Although seeds have been the subject of extensive studies for many years, their seed coats are just beginning to be examined from the perspective of molecular genetics and control of development. The seed coat, plays a vital role in the life cycle of plants by controlling the development of the embryo and determining seed dormancy and germination. Within the seed coat are a number of unique tissues that undergo differentiation to serve specific functions in the seed. A large number of genes are known to be specifically expressed within the seed coat tissues; however, very few of them are understood functionally. The seed coat synthesizes a wide range of novel compounds that may serve the plant in diverse ways, including defense and control of development. Many of the compounds are sources of industrial products and are components of food and feeds. The use of seed coat biotechnology to enhance seed quality and yield, or to generate novel components has not been exploited, largely because of lack of knowledge of the genetic systems that govern seed coat development and composition. In this review, we will examine the recent advances in seed coat, biology from the perspective of structure, composition and molecular genetics. We will consider the diverse avenues that are possible for seed coat biotechnology in the future. This review will focus principally on the seed coats of the Brassicaceae and Fabaceae as they allow us to merge the areas of molecular biology, physiology and structure to gain a perspective on the possibilities for seed coat modifications in the future. The authors have contributed equally and are considered first authors.  相似文献   

6.
Summary Three seed coat sterilants were evaluated for effectiveness as surface sterilants and for effects on seed germination. Several exposure times in sodium hypochlorite, hydrogen peroxide and peracetic acid were evaluated. Seeds of the following crop plants were used: wheat (Triticum aestivum L.); sorghum [Sorghum bicolor (L.) Moench]; soybean [Glycine max (L.) Merrill]. All treatments reduced germination of wheat and soybean seed, but only the most severe peracetic acid treatments substantially reduced germination of sorghum seed. Considering both sterilization effectiveness and seed germination, a treatment with 5% sodium hypochlorite for 45 min appeared to be the most satisfactory of the treatments used.  相似文献   

7.
Dry powder, liquid and microencapsulated formulations of organophosphate and synthetic pyrethroid insecticidal seed treatments were tested as possible alternatives to the standard organochlorine seed treatments for autumn-sown wheat in mineral and organic soils heavily infested with wheat bulb fly eggs and (subsequently) larvae. Retention of insecticides on the seed coat varied from 40% to 120% of the target dose; it was usually good when microencapsulated formulations were used. Chlorfenvinphos, fonofos, isofenphos and triazophos, each applied at 2-0 g a.i./kg seed, were phytotoxic, the symptoms varying from a slight delaying effect upon germination to an adverse effect upon grain yield. Chlorfenvinphos at 0–2 to 2-0 g a.i./kg seed was consistently effective against wheat bulb fly larvae in both mineral and organic soils. Athidathion 0–8 g a.i./kg, carbophenothion 1–2 g a.i./kg, ethion 1–7 g a.i./kg and fonofos (microencapsulated formulations) at 1-0 or 2-0 g a.i./kg were also effective in mineral and organic soils. Of the synthetic pyrethroids tested as seed treatments, permethrin gave excellent results in mineral soils at 1-0 g a.i./kg or in synergised formulations at 0–12 or 0–24 g a.i./kg but was disappointing in organic soils. In a single comparison of seed treatments applied to wheat sown early (14 October) and late (20 November), chlorfenvinphos was effective at both sowing dates whereas athidathion, ethion and pirimiphos-ethyl gave better results in late-sown wheat. A single trial compared deep with shallow sowing of treated seed. Most insecticides performed better on shallow-sown wheat, but chlorfenvinphos was equally effective against the pest at both sowing depths. Most insecticides restricted the numbers of larvae entering host plants but had little or no subsequent effect upon larval survival within attacked shoots. Fonofos and isofenphos, and to a lesser extent chlorfenvinphos, seed treatments additionally killed many larvae within plant shoots.  相似文献   

8.
在无外源激素培养基上花生胚能继续发育.渗调物质如甘露醇可抑制胚早萌,维持胚性发育,促进贮藏蛋白质合成和累积.渗调物质对胚离体发育的调控与其提高胚内源ABA含量有关.  相似文献   

9.
Salicylic acid methyltransferase (SAMT), benzoic acid methyltransferase (BAMT) and theobromine methyltransferase (TH) (henceforth, SABATH) family proteins belong to a unique class of mehtyltransferase that can methylate small molecular compounds Including indole-3-acidic acid (IAA), salicylic acid (SA) and jasmonic acid (JA), in plants. Here we report that the GAMT2 protein, which has 34.2% similarity with IAMT1 in the amino acid sequence, can methylate gibberellic acid (GA). Biolnformatics analysis suggests that GAMT2 may be able to methylate one molecule larger than SA. GAMT2 is predominantly expressed in the developing seed embryo and endosperm in Arabidopsis. During seed germination, the expression of GAMT2 decreases until the cotyledons expand out of the seed coat. Overexpression of GAMT2 in Arabidopsis resulted in multiple phenotypes, including dwarfism, retarded growth, late flowering, and reduced fertility, which are similar to the phenotypes of GA-deficient mutants. Seed germination assay showed that GAMT2 overexpression in plants was hypersensitive to GA biosynthesis inhibitor (ancymidol) and abscisic acid (ABA) treatments, whereas the GAMT2 null mutant (SALK_075450) was slightly Insensitive to such treatments, suggesting that GAMT2 may methylate GA or ABA. Enzyme activity analysis indicated that GAMT2 was able to methylate GA3 into Methyi-GA3 in vitro, but could not methylate ABA. Microarray analysis on GAMT2 overexpression plants suggested that Methyl-GA may be an Inactive form of GA in Arabidopsis. These data suggest that GAMT2 Is Involved in seed maturation and germination by modulating GA activity.  相似文献   

10.
高吸水性种衣剂对水稻旱育秧苗生长的影响   总被引:1,自引:0,他引:1  
高吸水性树脂具有较强吸水保湿功能,使用高吸水性水稻种衣剂培育旱育秧苗,可以有效控制苗床水分和湿度,同时能缓释农药和肥料,增强秧苗抗逆性。试验表明,高吸水性种衣剂处理对水稻发芽率和发芽势无不良影响,且壮根、壮苗效果显著;能减少病害发生,保持旱育秧苗发根优势和分蘖优势,达到省工省时的目的。  相似文献   

11.
Aristolochiaceae have been described as having seeds with underdeveloped embryos and morphological or morphophysiological dormancy. Aristolochia galeata is a native climber found in the Cerrado biome, associated with road and gallery forest edges. The aims of this study were to investigate: embryo growth rate, morphology and seed germination parameters under different treatments. Embryos were excised to obtain embryo length at four stages: initial, seeds after coat rupture, radicle tip protrusion and cotyledon emergence from the seed coat. Germination tests were conducted at 30 °C under three nitrate concentrations (1, 10 and 20 mM), fluctuating temperature (27/20 °C) and light and dark conditions. We found that seeds have underdeveloped embryos, which take about 301 ± 178 h (±SD) to achieve seed coat rupture, another 205 ± 126 h to reach radicle protrusion and 176 ± 76 h more to the final stage of cotyledon emergence. Germinability was above 52% in all treatments, except in the dark (15%). For all treatments, average germination time was above 290 ± 123 h. Potassium nitrate increased germinability to >87%. No particular treatment was required for embryo development, but seeds in the population that continued to germinate after 1 month were probably in various states of non-deep, simple morphophysiological dormancy. Increased germinability in nitrate treatments and light requirement for germination could prevent germination under unsuitable environmental conditions and be a strategy to increase seedling establishment in the cerrado.  相似文献   

12.
Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive.  相似文献   

13.
以香圆(Citrus wilsonii Tanaka)种子为实验材料,通过测定种皮透水性、种皮机械障碍、发芽温度等对种子萌发的影响从而探讨种子萌发特征;通过切割种子、热水浸种、赤霉素浸种、低温层积等处理方式探索种子的催芽方法。结果显示:香圆种皮不存在透水性障碍,但其机械障碍对种子萌发具有抑制作用,且内种皮对萌发影响较大;种子在15℃、25℃、35℃恒温及15℃/30℃变温条件下均可萌发,其最适萌发温度为25℃;采用低温层积、热水浸种、切除1/3种子等方法均可一定程度上促进种子萌发。生产中宜采用始温60℃热水浸种24h的方法对香圆种子进行催芽。  相似文献   

14.
  • The seed coat composition of white (JS 335) and black (Bhatt) soybean (Glycine max (L.) Merr) having different water permeability was studied.
  • Phenols, tannins and proteins were measured, as well as trace elements and metabolites in the seed coats.
  • The seed coat of Bhatt was impermeable and imposed dormancy, while that of JS 335 was permeable and seeds exhibited imbibitional injury. Bhatt seed coats contained comparatively higher concentrations of phenols, tannins, proteins, Fe and Cu than those of JS 335. Metabolites of seed coats of both genotypes contained 164 compounds, among which only 14 were common to both cultivars, while the remaining 79 and 71 compounds were unique to JS 331 and Bhatt, respectively.
  • Phenols are the main compounds responsible for seed coat impermeability and accumulate in palisade cells of Bhatt, providing impermeability and strength to the seed coat. JS 335 had more cracked seed coats, mainly due to their lower tannin content. Alkanes, esters, carboxylic acids and alcohols were common to both genotypes, while cyclic thiocarbamate (1.07%), monoterpene alcohols (1.07%), nitric esters (1.07%), phenoxazine (1.07%) and sulphoxide (1.07%) compounds were unique to the JS 335 seed coat, while aldehydes (2.35%), amides (1.17%), azoles (1.17%) and sugar moieties (1.17%) were unique to Bhatt seed coats. This study provides a platform for isolation and understanding of each identified compound for its function in seed coat permeability.
  相似文献   

15.
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis.  相似文献   

16.
Mature seed coats of representatives of all three genera ofMusaceae were analysed for macromolecular composition with variousmass spectrometric techniques and compared with scanning electronmicroscopy and light microscopy in combination with histochemicaltechniques. Mass spectrometric techniques are more sensitiveand more specific in identifying macromolecular compounds thanhistochemical methods. The macromolecular ‘fingerprint’of the seed coats of Musaceae showed unique components of aromaticphenols. The seed coat structure of all three genera is homogeneouswithin the Musaceae. It is characteristic at the family leveland most complex within the Zingiberales. Very remarkable arethe separation of the outer cell walls from the exotestal layer,exposing a secondary surface with silica crystals, and the relativelythick mesotesta which protects the seed, e.g. against the bitingforces and passage through the digestive tracts of dispersingagents. Germination takes place with an operculum and is facilitatedby a predetermined rupture layer in the micropylar collar. Themusaceaous seed presents a good example of the solution of conflictingdemands of protection and germination. Musaceae; Musa; Ensete; Musella; seed coat; pyrolysis (gas chromatography) mass spectrometry; histochemistry; anatomy; macromolecules; silica; lignin; cellulose; vegetable polyphenols; operculum; germination  相似文献   

17.
掌叶木(Handeliodendron bodinieri)是残遗于中国的稀有单种属植物,因人为破坏、生境特殊及自身特性的影响,资源稀少,被列为国家一级重点保护野生珍稀濒危植物。该研究以掌叶木种子为材料,研究了4种不同发芽条件下(带种皮、浓硫酸处理种皮、完全去除种皮、仅露出胚根)种子萌发性、种皮透水性、掌叶木果皮、假种皮、种皮和种仁四个部位不同浓度甲醇浸提物(0、3.125、6.25、12.5、25 mg/m L)对白菜种子萌发及幼苗生长的影响以及掌叶木各部位浸提物对种子萌发的影响。结果表明:(1)掌叶木种皮具有一定的透水性,为掌叶木种子的萌发提供必要的透水透气条件,不影响种子萌发前的水分吸收,但掌叶木种皮的机械阻碍、易霉变对种子的萌发影响较大。(2)掌叶木的果皮、假种皮、种皮和种仁甲醇浸提物对白菜种子的萌发和生长都有影响,尤其对白菜幼根的生长有较强的抑制作用,抑制强度依次是种仁果皮假种皮种皮,且随着浓度的升高,抑制作用增强。该研究结果揭示了掌叶木种子难发芽、发芽率低的原因,为掌叶木的人工扩繁和保护与利用奠定了基础。  相似文献   

18.
种皮和环境温度对橡胶树种子萌发的影响   总被引:1,自引:0,他引:1  
在人工气候箱控制的条件下,研究了种皮和环境温度对橡胶树(Hevea brasiliensis)种子萌发的影响.结果表明,种皮对橡胶树种子的吸水和萌发具有明显的机械限制作用;去除种皮后种子萌发速率加快,萌发指数增大,但萌发率从83.8%下降到47.8%,幼苗活力指数从332.3下降到187.9.15℃以下的温度明显推迟种子萌发,且萌发率下降.去除种皮后的种仁萌发率、萌发指数和幼苗活力指数均随着温度的升高而增大;有种皮种子的萌发率、萌发指数和幼苗活力指数分别在20℃(94.7%)、30℃(1.86)和25℃(374.4)时最大,而萌发速率系数随着温度的升高先增大后减小.在橡胶树栽培和胶园建设中,可利用种皮对种仁水分散失的限制作用以及对低温的不敏感性,有效延长橡胶树种子的贮藏时间,提高萌发率和籽苗质量.  相似文献   

19.
Seed enhancement technologies such as seed priming and seed coating, developed by the agricultural seed industry, are standard procedures for the majority of crop and horticultural seeds. However, such technologies are only just being evaluated for native plant seeds despite the potential benefits of such treatments for improving restoration effectiveness. Key approaches applicable to native seed include: (1) seed priming, where seeds are hydrated under controlled conditions, and (2) seed coating, in which external materials and compounds are applied onto seeds through a diversity of treatments. These technologies are commonly employed to accelerate and synchronize germination and to improve seed vigor, seedling emergence, establishment, and to facilitate mechanized seed delivery to site, through standardizing seed size and shape. Seed enhancement technologies have now been tested on native seeds to overcome logistical and ecological barriers in restoration. However, further research is needed to extend the application of seed enhancements to a broader array of species, ecosystems, and regions as well as to evaluate new and innovative approaches such as the incorporation of beneficial soil microorganisms and plant growth regulators in the coatings. As techniques in native seed enhancement develop, these approaches need to be capable of being scaled‐up to provide the tonnages of seed required for global restoration.  相似文献   

20.
硬实种子休眠的机制和解除方法   总被引:41,自引:1,他引:40  
硬实是植物中普遍存在的现象。硬实种子种皮透水透气性差和对胚生长的机械限制,引起种子休眠。遗传因素、母株环境、贮藏条件、采收方法、种子本身的成熟度、含水量、大小、形状及颜色都能影响种子硬实率。硬实的处理方法大体可分物理、化学和生物3类,这些方法通过改善种皮的通透性,促进气体交换和水分进入,消除机械限制而促进萌发。物理方法有机械损伤、低温和高温处理、干湿交错处理、辐射和高压处理等;化学方法有酸蚀、碱液浸泡和有机溶剂等处理。硬实休眠有利于植物调节种子萌发的时空分布,在种质保存上也具有特别重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号