首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Anoura geoffroyi (Chiroptera, Phyllostomidae, Glossophaginae), Geoffroy's hairy-legged long-tongued bat, were collected from September 1984 to August 1985, and these bats were found to breed seasonally in the wild on Trinidad, West Indies, at 10 degrees N latitude. Histological examination of these samples indicated that females became pregnant in July or August, and young were born in late November or early December. The testes and epididymides were small from September to mid-April, increased threefold in weight between mid-April and late May, reached a peak weight in July, and decreased in weight in August. Spermatogenesis occurred throughout the testes of males captured from May to August. In 1990, the timing of parturition in females that gave birth in the laboratory to young conceived in the wild was similar to the timing in the field in 1984-1985. Groups of 10-13 males were subjected in the laboratory to (i) a gradually changing, civil twilight photoperiod that mimicked the natural cycle of annual change at 10 degrees N latitude, (ii) the same gradually changing cycle of photoperiod accelerated to a six-month period, or (iii) a constant photoperiod (light 12:54 h: dark 11:06 h). These treatments began in mid-December, four months before the initiation of testicular recrudescence in the wild. In all three groups, testicular volume remained low until April, and then increased two- to threefold between late April and late June, rising to a peak in July, as occurred in the wild.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
【目的】探讨桃园捕食性节肢动物群落特征、结构组成及动态规律,为桃园害虫防治提供依据。【方法】在西北农林科技大学实验站选择树龄5~6年的桃园为调查对象,系统调查园内节肢动物群落的种类和数量,测定群落的相对丰富度、多样性指数(H')、均匀度指数(E)及优势集中性指数(C)等指标,研究园内捕食性节肢动物群落的变化规律。【结果】桃园捕食性节肢动物群落的多样性指数和均匀度指数表现为高-低-高-低的趋势;群落优势度(B)与优势集中性指数呈现低-高-低趋势。食蚜蝇、蜘蛛、瓢虫、步甲和草蛉是桃园主要捕食性节肢动物亚群落。大灰食蚜蝇Metasyrphus corollae和黑带食蚜蝇Episyrphus balteata是食蚜蝇亚群落的优势种群,5月中旬至6月下旬是其发生高峰期;龟纹瓢虫Propylaea japonica是瓢虫亚群落的优势种群,5月中旬至7月下旬是其发生高峰期,随后数量维持在较低水平;龟纹瓢虫鼎斑变型和锚斑变型是桃园最常见的色斑变型,分别占49.6%和29%;蜘蛛亚群落主要包括皿蛛、蟹蛛和球蛛类群,5月上中旬、8月中下旬和10月中旬是其发生高峰期;步甲亚群落的发生高峰期为5月上旬至6月下旬,随后维持在较低的水平;中华草蛉Chrysoperla sinica为草蛉亚群落的优势种群,6月上旬至8月上旬是其发生高峰期。【结论】桃园捕食性节肢动物主要包括捕食性蜘蛛、食蚜蝇、捕食性瓢虫、步甲和草蛉5个亚群落,不同天敌亚群落的结构特征随着季节和气温的变化而相互演替,共同发挥控制害虫的作用。  相似文献   

3.
A three year study was carried out at Hoytville and at Wooster, Ohio, USA from 2006 to 2008 to investigate the influence of planting date, transgenic maize and hybrid maturity on Ostrinia nubilalis (Hubner) population dynamics and oviposition patterns. Maize plants were planted in late April or early May, mid‐May and early June during each year. The moth flight pattern showed bivoltine generations during the three years. The first moth flight peaked in June, with the populations declining during July. The second moth flight peaked in August and declined towards the end of September or early October. Egg mass density did not differ significantly between transgenic and non‐transgenic maize of different maturities. Significant differences were observed, however, among planting dates, sampling dates, and sampling date × planting date interactions. Generally higher numbers of egg masses from second generation moths were deposited on late planted maize than middle and early plantings.  相似文献   

4.
The cottony cushion scale, Icerya purchasi Maskell (Hemiptera: Monophlebidae), is a polyphagous, cosmopolitan and destructive pest of citrus. This study was conducted to obtain the stage-specific phenology of I. purchasi for seasonal management strategies in the field. Movement of crawlers (hatched nymphs) in egg sacs of overwintered females started in late May, peaked in early to mid-June, and was completed by late June. Generally, the 1st generation occurred from late May until late September and the overlapping second generation occurred from early September. The 1st nymphs in the 1st generation peaked in mid June. The 2nd nymphs showed peak activity in late July. The 3rd nymphs showed peak population in early September. The 1st generation adults peaked in mid September. In the 2nd generation, the 1st nymphs peaked in early October, the 2nd nymphs showed peak activity in late October, and the 3rd nymphs reached a plateau after mid October. The 2nd generation adults occurred from late October. Consequently, two life cycles were competed in the Jeju area. The average fertilities of I. purchasi were 623 and 247 crawlers per female in overwintered and summer generations, respectively. An average of 20.7% of all citrus orchards was infested with I. purchasi, with a mean of 3.9% infested trees in Jeju. These results should be useful in establishing management strategies for I. purchasi in citrus orchards.  相似文献   

5.
Flight periods of the cherry fruit fly, Rhagoletis cingulata (Loew), were compared in the major sweet and tart cherry-growing regions of Michigan, among neglected orchards, managed orchards, and natural areas containing the ancestral host, black cherry. Traps were deployed from early June to late September 2005 and 2006. Captures indicated that cherry fruit fly has an early flight (June-July) in neglected orchards, a mid-season flight peaking immediately after harvest (June-August) in managed orchards, and an extended flight covering most of the season (June-September) in natural areas. We found that the period of fruit infestation mirrored the flight period in neglected and managed orchards. In natural areas, we found infestation late in the season only. The relative emergence periods for adults reared from pupae collected from the three habitats and maintained under the same conditions coincided with adult flight periods for each habitat. We also studied factors related to fruit availability that may have a role in shaping the flight periods. Fruit abundance decreased rapidly early in the season in neglected orchards, whereas in managed orchards, fruit left after harvest remained on the trees until late August. Measurements of fruit size and skin firmness revealed that fly activity in neglected and managed orchards began immediately after fruit increased in size and skin firmness decreased, whereas in natural areas, the flight began before fruit matured. In managed orchards, fruit harvest and insecticide sprays likely maintain the late flight period of resident fly populations by preventing the use of fruit earlier in the season. However, a significant proportion of these resident flies may still emerge before harvest and increase the risk of costly fruit infestation.  相似文献   

6.
播种时间对棉田害虫和天敌种群的影响   总被引:1,自引:0,他引:1  
通过对3种不同时间播种的棉田内害虫、天敌系统调查,分析和比较了播种时间对棉田害虫、天敌种群和群落的影响。结果表明,播种期推后,可减轻或避免第二代棉铃虫的为害,加重第三代和第四代棉铃虫的为害;但不同播种日期对不同时期的棉蚜影响不同,苗蚜以迟播棉田内种群数量最高,伏蚜则以夏播棉田内种群数量最高。播种期的推后,不利于棉田捕食性瓢虫、蝽类、蜘蛛和寄生性天敌种群增长。棉田害虫和天敌群落多样性指数也随播种期的推后而下降.因此.应针对不同时间播种的棉田开展相应的害虫生态管理。  相似文献   

7.
本文在福鼎对稻水象甲消长动态进行了调查.并对成虫卵巢、飞行肌进行了解剖。通过解剖,所预测的各虫态发生期厦一代成虫迁移期与田间调查结果基本吻合。稻水象甲产卵高峰在4月底至5月上旬.幼虫、蛹和一代成虫的盛发期分别在5月上中旬、6月中下旬和6月下旬;一代成虫在6月下旬开始从稻田迁出。飞行肌解剖结果表明,飞行肌宽度随时间变化而变化,而长度则比较恒定,与发育历期无关,所以飞行肌宽度可作为监测依据,而长度则不宜采用。  相似文献   

8.
Abstract:  Oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) has recently become a key pest of apples throughout the eastern USA. Pheromone-mediated mating disruption of Oriental fruit moth was successfully used in North Carolina apple orchards in the past few years. However, low levels of late-season fruit damage occurred in some orchards treated in late May with hand-applied pheromone dispensers because of inadequate dispenser longevity. To investigate alternative pheromone application schedules for extended mating disruption control, the following pheromone treatments were compared with conventional insecticides in Henderson County (NC) in 2002: late May application of hand-applied dispensers; late June application of hand-applied dispensers; late May application of hand-applied dispensers supplemented with a late August application of sprayable pheromone dispensers; late May application of hand-applied dispensers which have a longer activity period; and conventional insecticides as a control. All treatments were sprayed with an insecticide at petal fall in late April for thinning and for control of the first generation Oriental fruit moth adults. Pheromone trap catches were significantly reduced in all mating disruption blocks compared with conventional insecticide blocks. Among pheromone treatments, the highest trap captures were recorded in the delayed hand-applied dispenser treatment in June before treatment. However, the mean percentage fruit damage did not vary with timing of application of hand-applied dispensers and the type of pheromone dispenser used. Clearly, the combination of each mating disruption treatment with insecticide application against first generation Oriental fruit moth was as effective as the conventional insecticide treatment under moderate population pressure.  相似文献   

9.
The reproductive biology of blacknose sharks Carcharhinus acronotus in the western North Atlantic Ocean was studied by examining specimens collected in the coastal waters of South Carolina. Males begin the maturation process between 875 and 910 mm fork length ( L F), as indicated by the presence of functional claspers and siphon sacs. The presence of vitellogenic oocytes and developing oviducal glands and uteri indicated that females begin to mature at c . 870 mm L F. Length at which 50% of the population reached maturity was 896 and 964 mm L F, equivalent to 4·3 and 4·5 years, for males and females, respectively. Gonado‐somatic indices suggested that spermatogenesis and vitellogenesis began after December. Mating took place during the end of May and the beginning of June. Fertilization occurred during late June and early July, suggesting that female blacknose sharks were capable of sperm storage. Based on the timing of fertilization and occurrence of females carrying near‐term pups in late May and early June, the gestation period for blacknose sharks was c . 11 months. Female blacknose sharks reproduced biennially based on the absence of vitellogenic oocytes in near‐term females and there being no indication of vitellogenesis in postpartum females. Male blacknose sharks were capable of reproducing annually as indicated by turgid genital ducts, which were observed in all mature males collected during late May and early June.  相似文献   

10.
Lemon sole Microstomus kitt is a commercially valuable flatfish species that occurs in shelf waters around the northeast Atlantic. Only the most basic life-history information is available for the North Sea. Spawning is generally assumed to occur between early May and October, with a peak between May and August. Lemon sole larvae have been found in the water column in the northern North Sea in winter during standard surveys. Larvae captured in November/December 2016 and January/February 2017 using the International Council for the Exploration of the Seas standard 2 m Midwater Ring trawls (MIK) were analysed to gain a better understanding of the pelagic early life-history stages of lemon sole, especially in relation to the timing of spawning and the dispersal of overwintering larvae. Larval age was estimated from sagittal otolith primary increment counts. The larvae caught in November/December ranged in nominal age from 4 to 45 days post-hatching which suggests that spawning continues into late October and November. Most, but not all, of the larvae caught in January/February were post metamorphosis, and the difference in age between the two sampling dates was consistent with the elapsed time between samplings. The estimated hatching dates confirm that lemon sole spawning extends into late autumn in the northern North Sea, with overwintering larvae in all developmental stages. Drift modelling of eggs and larvae released at historically documented spawning grounds in the northern North Sea suggests that these grounds are also the source for all of the larvae sampled during the 2016–2017 surveys.  相似文献   

11.
黄檀丑舟蛾生物学特性及防治的研究   总被引:1,自引:0,他引:1  
黄檀丑舟蛾是南岭黄檀的重要食叶害虫,该虫在福建南平一年发生6代,以蛹在疏松土壤中越冬,翌年5月初成虫开始羽化。雌虫产卵于嫩叶上,成块。每雌产卵82-306粒。幼虫5龄,各代幼虫的危害盛期;第一代5月下旬至6旬上旬。第二代6月下旬,第三代7月下旬,第四代8月中旬,第五代9月下旬,第六代11月上旬至中旬。试验表明,20%杀灭菊酯4000倍液或80%敌敌畏2000倍液对幼虫均有良好的毒杀效果。  相似文献   

12.
高建发  杜进琦 《昆虫知识》2010,47(4):794-796
小红珠绢蝶Parnassius nomion Fischer von Waldheim在甘肃甘南1年发生1代。翌年5月上旬幼虫孵化,6月下旬开始化蛹,7月下旬至8月上旬,成虫开始羽化,8月中旬至9月上旬成虫开始产卵,该虫以卵越冬。  相似文献   

13.
穴蚁蛉的自然种群动态   总被引:4,自引:0,他引:4  
本文主要报道了穴蚁蛉 Myrmeleon(Morter) sagax(Walker)幼虫的野外自然种群数量动态。穴蚁蛉 1年发生 1代 ,在自然界其幼虫 3~ 5月份数量平稳略有下降 ,5、6月间数量迅速下降 ,6月初数量最少 ;7~ 9月份数量迅速上升 ,而后下降 ;新一代穴蚁蛉幼虫 (蚁狮 )在 6月份出现。其种群 ,秋季以 1龄幼虫数量为多 ,冬季主要以 2龄幼虫为主越冬 ,春季以 3龄蚁狮占优势。春季野外采集来的蚁狮 ,在每日光照 14小时、每周两饲 (每次饲 1头米蛾 Corcyra cephalonica成虫 )的条件下饲养 ,结果发现 ,采集回时处于 3龄期的蚁狮比自然界大约提前 1个月结茧化蛹和羽化 ;而采集回时处于 2龄期的蚁狮则和自然界中的情况基本一致。  相似文献   

14.
Numerous field studies were conducted in commercial nurseries in Tennessee from 1996 through 1999 to evaluate chemical and biological treatments, application timing and rates, and method of application for control of early instars of Japanese beetle, Popillia japonica Newman. Insecticide treatments included bifenthrin, bendiocarb, chlorpyrifos, carbaryl, fipronil, halofenozide, imidacloprid, permethrin, tefluthrin, thiamethoxam, and trichlorfon. Biological treatments included entomopathogenic nematodes (Heterorhabditis bacteriophora HP88 or H. marelatus, Bacillus thuringiensis Berliner subspecies japonensis Buibui strain, and Beauveria bassiana (Balsamo) Vuillemin. All treatments were applied on the soil surface or injected into the soil around the base of each tree. Tree type and size varied among and within tests, however, the sampling unit (61-cm-diameter root ball) remained the same throughout all tests. The biological treatments provided poor-to-moderate control (0-75%) of Japanese beetle larvae. Imidacloprid was the most frequently evaluated insecticide and achieved 91-100, 87-100, 83-100, and 41-100% control with applications in May, June, July, and August, respectively. Halofenozide treatments were not significantly different from imidacloprid treatments with one exception. Halofenozide provided 60-87, 85-100, and 82-92 control with applications made in June, July, and August, respectively. Fipronil and thiamethoxam were evaluated to a lesser extent but both performed similarly to imidacloprid. Most other insecticide treatments were less successful in reducing numbers of Japanese beetle larvae and with few exceptions achieved <50% control.  相似文献   

15.
Seasonal abundance and activity of all the three post-embryogenic stages of Haemaphysalis longicornis, both feeding and free-living phases, were evaluated over a period of 2 years, from February 2008 to January 2010, in North China. Feeding ticks were removed weekly from head and ears of domestic sheep and the attachment sites of this tick were assessed coinstantaneously; free-living ticks were collected weekly in four habitat types by flag-dragging. The results suggested that H. longicornis mainly resides in shrubs and completes one generation per year with population attrition between stages. Infestation of nymphs was detected from March to September with highest peak between late April and early May; adults were detected from April to September with highest peak between late June and July, and an overwintering male population was found during late September to March; infestation of larvae was observed from June to October and peaked between middle August and early September. Most of this tick (91%) attached to head and ears of hosts. Additionally, we captured rodents from April to September 2008, but only a negligible number of nymphs were detected. This result suggested that rodents are not the principal hosts for this tick in the study area.  相似文献   

16.
黄杨绒蚧Eriococcus abeliceae Kuwana是危害园林树木的重要害虫之一。该蚧在西宁地区1年发生1代,以2龄若虫在树干裂皮缝中越冬。翌年3月下旬2龄若虫蜕皮变为3龄若虫,开始为害,雌虫5月上旬开始产卵,卵期18~23d,每雌虫产卵量134~424粒,平均287粒。6月上旬卵开始孵化,孵化率100%。雌虫3龄,雄虫2龄。在室内自然变温条件下,对黄杨绒蚧卵的发育起点温度和有效积温进行测定。结果表明:卵发育起点温度12.98℃,有效积温39.03日.度;预测式为N=(39.03±2.66)/T-(12.98±0.18)。  相似文献   

17.
《Journal of Asia》2007,10(4):363-367
Arrowhead scale, Unaspis yanonensis (Kuwana), feeds on the foliage, stems, and fruits of citrus trees, and causes tree dieback when heavy infestations occur. The objective of this study was to collect basic data to establish seasonal management strategies for U. yanonensis. The abundances of male nymphs and female adults were monitored in unsprayed citrus orchards. The overwintered females started to produce their progenies (1st gen.) from mid-May. The populations of the 1st nymphs in the 1st generation showed a bimodal occurrence pattern, with a 1st larger peak between late May and early June, and a 2nd smaller peak in June. The nymphs in the 2nd generation, which were laid from newly developed females, were observed from late July, and the 1st peak occurred in mid-August, followed by an obscure later peak (the 2nd peak) around late September. The numbers of live females for the overwintered populations began to decrease gradually from early June by the impact of the predacious Chilocorus kuwanae, as well as by natural mortality factors, and dropped to a low level in mid-July. When there were abundant predator attacks, the U. yanonensis female populations sharply decreased from early June and were almost nonexistent in July. New female adults (1st generation adults) appeared from late June and peaked in mid-July. The 2nd generation female adults, consequently, the overwintering generation, occurred from mid- September, and gradually increased to late October. Overall, these results will be useful in terms of management strategies for U. yanonensis in citrus orchards.  相似文献   

18.
Weekly measurements of fruit growth, fruit respiration and shoot extension growth were made in the field on early (June Lady) and late (O'Henry) maturing cultivars of peach ( Prunus persica L. Batsch). The seasonal patterns of fruit growth and respiration for the two cultivars were very similar except that the early maturing cultivar bloomed a few days earlier than the late cultivar and had a shorter intermediate stage (Stage II) of fruit growth. Maximum rates of fruit respiration per unit weight at 20°C were similar for both cultivars during the first two stages of fruit growth but higher for the early cultivar during the final stage of fruit growth. Maximum fruit growth rates within any particular stage of fruit growth were similar for both cultivars, but the mean fruit weight of the late cultivar was greater at the end of Stage II, because of the extended length of this stage compared to the early cultivar. The final stage of most rapid fruit growth and respiration coincided with the period of most rapid shoot extension growth in the early maturing cultivar but occurred after this period in the late maturing cultivar. Genetic selection for early fruit maturity in peach has apparently had little effect on timing of shoot growth and this may result in increased competition between vegetative and reproductive sinks during peak periods of fruit growth in early maturing cultivars.  相似文献   

19.
Region x year means for crude protein concentration (CP) and Hagberg falling number (HFN) from the Home Grown Cereals Authority (HGCA) surveys were modelled using mean daily temperature, rainfall and nitrogen application. A model accounting for 78.6% of the variation in CP incorporated positive coefficients for mean daily temperature (25 June to 15 July), nitrogen applied to the crop, and early summer rainfall (28 May to 8 July), and a negative coefficient for spring rainfall (5 March – 27 May). For CP there was no statistical evidence that fitting one regression for all regions was significantly worse than fitting individual lines for each of the 10 regions. A model describing 67.1% of the variation in HFN incorporated a negative coefficient for August rainfall and positive coefficients for mean June temperature, mean August temperature and nitrogen applied to the crop. There was statistical evidence that fitting separate lines for certain regions was justified.  相似文献   

20.
The occurrence of Marteilioides chungmuensis, a protozoan paramyxean parasite in the reproductive system of the Pacific oyster Crassostrea gigas, was observed at Gosung Bay, Korea. Seasonal variation in gonad development was investigated in a suspended cultured oyster population. Gametogenesis began in February and first-spawning was observed between mid and late June when surface water temperature reached 22 to 25 degrees C. Spawning activity extended from mid June to late September, with 2 marked spawning peaks in June and August. Histological examination indicated that gonad development paralleled seasonal fluctuations in water temperature. Spawning in late June was partly associated with a sudden drop in salinity due to large freshwater inputs to the Bay with the summer monsoon. M. chungmuensis occurred in developing and fully mature eggs of spawning oysters in late June to January, but were not observed from February to May. Monthly mean infection intensity was high in late June when most oysters had their first spawning period. The infection level was also relatively high in late August and November, when oysters were spawning or had completed spawning. Several oysters collected in November (11.4%) and December (16.3%) carried a large quantity of ripe but M. chungmuensis-infected eggs, suggesting that infection also causes spawning failure by delaying spawning and destroying ripe oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号