首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2001-2003, the levels of infestation of thrips in cabbage monocrops and cabbage/white clover intercrops were compared. The flight activity of thrips was monitored using blue sticky traps and white water traps to obtain a better understanding of population dynamics of thrips. Plant samples were taken to record the number of thrips on cabbage. Over the years of observations, the highest number of thrips was collected in blue sticky traps on cabbage undersown with white clover. In the period from 15th June to 5th July 2001, the number of thrips collected in blue sticky traps in the monocropped cultivation and intercrops with white clover was on similar low levels. Next, the number suddenly increased to 372 thrips/trap in monocropped cultivation and 509 thrips/trap in the intercropped cultivation. During the period of the highest peak of thrips activity, which was on 17th July, there were 650 thrips/trap and nearly the same number was noticed for both types of cultivations. After this period, until the end of vegetation, the greater number of thrips was noticed for the traps placed in the intercrops. Additionally, in 2001 the thrips were collected in white water traps. Using this type of traps, 480 total thrips/trap were collected in the monocropped cultivation and 819/thrips/trap in the intercrops during the whole vegetation season. The percentage participation of Thrips tabaci Lind. caught in white water traps was 24.4% in the monocropped cultivation and 15.4% in the intercrops. In 2002, during the period from the middle of June to the third decade of July, significantly higher number of thrips was collected in blue sticky traps placed in the cabbage with white clover. The number of thrips collected during the period of the mass flights, which means in the first decade of July was over twice as many thrips in the traps placed in the intercropped cultivation (1316 thrips/trap) as in the monocropped cultivation (589 thrips/trap). In 2003, during the whole vegetation period, the number of thrips collected in blue sticky traps placed on the plots where cabbage was cultivated with white clover was evidently higher. In this year two peaks of the thrips flight activity were recorded: the first on 16th July and the second on 5th August. On both occassions, the number of thrips collected in blue sticky traps placed in the intercropped cultivations was about twice as high as in the monoculture cultivation. In 2001-2003, the thrips feeding on cabbage in the monocropped and intercropped cultivations were observed mainly in July and once again in August. The number of thrips on cabbage was low, only in 2002 this number was higher. In 2001, the number of thrips on cabbage in both types of cultivations was on similar level. The highest number of thrips was observed during the peak of thrips flight activity, which was in the middle of July. In years 2002-2003, despite the higher number of thrips collected in blue sticky traps placed in the intercropped cultivations, the number of pests collected from the cabbage undersown with white clover was lower than in the monocropped cultivation. In 2002, the period of the most intensive occurrence of thrips on cabbage was overlapping with the period of mass flight activity of thrips. During this period, a little higher number of thrips was noticed on cabbage in the intercropped cultivation (3.4 thrips/plant) than in the monocropped cultivation (3.2 thrips/plant). In 2003, the highest number of thrips on cabbage in both types of cultivations was noticed before the first significant peak of thrips flight activity. Whereas in the first decade of August, when the same high number of thrips collected in blue sticky traps was again noticed, no increase in the number of thrips feeding on cabbage was observed in both type of cultivations. Over all years of observations, despite the higher number of thrips collected in blue sticky traps in the intercropped cultivation, this number was always lower on the cabbage undersown with white clover. The most dominant species in both cultivations was Thrips tabaci Lind. Its percentage participation in the collected material was 83.1% in the monocropped cultivation and 76.6% in the intercropped cultivation.  相似文献   

2.
Onion thrips, Thrips tabaci Lindeman, are an economic pest of alliums worldwide. In Ontario onion-growing regions, seasonal abundance and population trends of onion thrips are not well known. The objectives of this research were to investigate onion thrips population dynamics by using both white sticky traps and plant counts, to gain insight into flight height, and to determine the genus and sex of thrips fauna present in monitored fields. Adult thrips were captured on white sticky traps placed in two commercial onion fields in the Thedford-Grand Bend Marsh region as early as mid-May in 2001, 2002, and 2003. Thrips were not recorded on onion plants in these fields until late June and early July. A comparison of sticky trap captures to plant counts revealed a strong, positive correlation, indicating that sticky traps, which consistently detected thrips earlier than plant counts, could be used instead of plant counts early in the season to monitor onion thrips populations. Pole traps placed in onion and an adjacent soybean, Glycine max (L.) Merr., field revealed that regardless of crop type, most thrips were captured 0.7-0.95 m above the soil surface. During this study, 70% of 137,000 thrips captured on sticky traps and 89% of 1,482 thrips captured in pan traps were female onion thrips. No male onion thrips were identified in this study: most of the remaining thrips were Frankliniella spp.  相似文献   

3.
In 2002, the occurrence of banded thrips (Aeolothrips intermedius Bagnall) and some other Thysanoptera species on white clover (Trifolium repens L.) was monitored at two locations in the continental part of Slovenia. White clover presents in many countries important intercrop in integrated vegetable production. Light blue sticky boards were placed on grasslands (one parcel on each location) with high percentage of white clover. Sticky boards were changed in about 10-days intervals from the end of April till the beginning of October. Number of caught individuals on the boards was counted. They were classified in three different groups: 1. Aeolothrips intermedius, 2. representatives of Haplothrips, Odontothrips and Frankliniella genera, 3. representatives of Thrips genus. We stated that, compared with the other Thysanoptera species in the open, predatory thrips occurs in lower number. Predatory species Aeolothrips intermedius was the most numerous during the flowering of white clover. It was established that other Thysanoptera species (the most of them are facultative phytophagous species) were more numerous also in the periods of less favourable weather conditions and during the non-flowering growing stages of white clover. Based on the results of present research we concluded that A. intermedius has a potential to control onion thrips (Thrips tabaci Lindeman), especially in July and August, when in the open both species occur in high numbers.  相似文献   

4.
‘Lure-and-infect’ is an insect pest management strategy with high potential but so far there are few examples of its application. Using traps as surrogates for auto-dissemination devices, we tested the attractiveness to naturally occurring thrips (Thysanoptera: Thripidae) of three trap types differing in colour and structure, with and without the thrips lure methyl isonicotinate (MI), and sticky plate traps as a control. The aim was to find more effective traps that could be further developed into devices for auto-dissemination and lure-and-infect of thrips. The number of thrips captured varied substantially with trap type and the presence of the MI lure. We found a high visual response to a sticky ‘white ruffle’ trap (i.e., a 30-cm-long cylindrical outline of folded fabric), compared to a commonly used blue sticky plate trap (Bug-scan) as the control. This effect was seen both in a greenhouse with roses (Rosa spp.), where we encountered western flower thrips, Frankliniella occidentalis (Pergande), and in a grass field, where we encountered onion thrips, Thrips tabaci Lindeman, and New Zealand flower thrips, Thrips obscuratus (Crawford). In the absence of MI, the white ruffle trap caught 7–22× more thrips than the control Bug-scan trap. A similarly designed blue ruffle trap and a modified Lynfield trap caught lower thrips numbers than the white ruffle and the control Bug-scan traps. Presence of MI substantially increased the captures of T. tabaci in all three trap types in the field (2.5–18×). In the greenhouse, without MI the white ruffle trap caught 3.5–14× more thrips than the Bug-scan, blue ruffle, or modified Lynfield traps. Presence of MI increased the captures of F. occidentalis males and females in the Lynfield and blue ruffle traps (1.4–2.8×), but not in the white ruffle trap in the greenhouse (ca. 1.1×). The importance of visual and olfactory factors for the design of effective auto-dissemination and lure-and-infect strategies for thrips management is discussed.  相似文献   

5.
Studies of Thysanoptera were realized at the Agricultural Experimental Station in Mydlniki near Cracow over the years 2003-2005. This research work covers the observations of the species composition of thrips and the periods of the occurrence of the particulars species of thrips and their numerousness. The thrips were collected from flowers of Valeriana officinalis L., Hypericum perforatum L. and Levisticum officinale Koch. Following thrips species dominated samples collected directly from plants: Frankliniella intonsa (Trybom), Thrips fuscipennis Haliday, Thrips tabaci Lindeman and Thrips major Uzel. The greatest number of thrips was noticed during flowering period on Valeriana officinalis L., and Hypericum perforatum L.  相似文献   

6.
Effects of temperature and precipitation on the temporal patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci, caught on yellow sticky traps were estimated in central and eastern North Carolina and eastern Virginia from 1997 through 2001. The impact that these environmental factors had on numbers of F. fusca and T. tabaci caught on sticky traps during April and May was determined using stepwise regression analysis of 43 and 38 site-years of aerial trapping data from 21 and 18 different field locations, respectively. The independent variables used in the regression models included degree-days, total precipitation, and the number of days in which precipitation occurred during January through May. Each variable was significant in explaining variation for both thrips species and, in all models, degree-days was the single best explanatory variable. Precipitation had a comparatively greater effect on T. tabaci than F. fusca. The numbers of F. fusca and T. tabaci captured in flight were positively related to degree-days and the number of days with precipitation but negatively related to total precipitation. Combined in a single model, degree-days, total precipitation, and the number of days with precipitation explained 70 and 55% of the total variation in the number of F. fusca captured from 1 April through 10 May and from 1 April through 31 May, respectively. Regarding T. tabaci flights, degree-days, total precipitation, and the number of days with precipitation collectively explained 57 and 63% of the total variation in the number captured from 1 April through 10 May and from 1 April through 31 May, respectively.  相似文献   

7.
Onion thrips, Thrips tabaci Lindeman, is the primary pest of onion, which is grown in either large-scale, monoculture systems surrounded by other onion fields, or in small-scale systems surrounded by multiple vegetable crops. In 2011 and 2012, populations of insect predators and their prey, T. tabaci, were assessed weekly in onion fields in both cropping systems. Insect predator taxa (eight species representing five families) were similar in onions grown in both systems and the most commonly occurring predators were from the family Aeolothripidae. Seasonal population dynamics of predators and T. tabaci followed similar trends within both cropping systems and tended to peak in late July and early August. Predator abundance was low in both systems, but predator abundance was nearly 2.5 to 13 times greater in onion fields in the small-scale system. T. tabaci abundance often positively predicted predator abundance in both cropping systems.  相似文献   

8.
Low, medium and high densities of western flower thrips, Frankliniella occidentalis (Pergande), were established in three greenhouses at the Greenhouse and Processing Crops Research Centre, Ontario, Canada, in 1996 and 1998 to develop economic injury levels for thrips on greenhouse cucumber. Thrips densities were monitored weekly using yellow sticky traps and flower counts. Fruit was harvested twice a week, graded for size, weighed, and rated for thrips damage using three damage categories. Significant yield reduction was detected 4 wk after severe fruit damage was observed in the high and medium thrips density treatments in 1996 and 7 wk in 1998. Percentage of severe damaged fruit (P(F3)) has significant linear relationships with the adult thrips density (x) that was sampled by sticky traps 1 wk before harvest (P(F3) = -0.2533 + 0.0828x) and that was sampled by flower counts 2 wk before harvest (P(F3) = -0.2025 + 0.5490x). Based on the regression equations, economic injury levels, expressed as adult thrips per sticky trap per day or adult thrips per flower, were calculated for various combinations of control costs, yield potential and fruit prices. The economic injury levels for F. occidentalis ranged from 20 to 50 adults per sticky trap per day or 3 to 7.5 per flower as determined under average greenhouse production conditions in Ontario, Canada.  相似文献   

9.
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) (western flower thrips, WFT) is a key pest in a range of crops worldwide. Anthocorid species (Hemiptera) are important natural enemies of thrips. Several experiments were undertaken to determine whether a thrips lure, methyl isonicotinate (MI), affected the behaviour of WFT and anthocorids found in outdoor crops. Currently, this volatile compound is used in conjunction with sticky traps for monitoring thrips predominantly in greenhouses in Northern Europe. In the present study, in a nectarine [Prunus persica (L.) (Rosaceae)] orchard and an outdoor capsicum [Capsicum annuum L. (Solanaceae)] crop in Spain, blue sticky and white water traps with MI caught significantly more WFT than traps without MI. The volatile compound also significantly increased both blue sticky and white water trap capture of anthocorids – predominantly Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) – in the capsicum crop. These results indicate that the behaviour of both WFT and O. laevigatus were altered by the presence of the compound and suggest there is potential to develop novel tools based on MI in conjunction with biological control strategies for thrips management.  相似文献   

10.
The test on the preference of Thrips palmi to eight color sticky cards was carried out in an eggplant field. The thrip had the strongest preference to blue sticky card (P<0.01), and its preference order to the other 7 color cards was as follows: blue, turguoise, yellow, deep blue, green, orange, red and black. Results on the trapping effect of blue sticky card from east, south, west and north directions show that most thrips were trapped from the north,which existed a significant difference with those from the other three directions (P<0.05). Five blue sticky cards were set up at the heights of 73.9,101.7,129.5,157.3 and 185.1 cm above the ground to trap thrips, when the average height of eggplant was approximately 70 cm. More thrips were trapped of 73.9 and 101.7 cm height, which existed significant difference with those at the other three heights. During 5 continuous 3 hour spans from 5 am to 8 pm, the numbers of female, male and total adult thrips trapped were not significantly different.  相似文献   

11.
The effects of five differently-colored sticky traps in capturing adult Diaphorina citri were evaluated in citrus orchards. Trap catches of D. citri were monitored fortnightly on blue, green, red, white and yellow sticky cards placed on three citrus varieties during D. citri active flight period from April to July in south Texas. Evaluation of mean trap catches of each color by repeated measures analysis of variance produced three separate groups: yellow traps caught significantly more D. citri adults than the other four traps; red and green traps caught significantly more D. citri than blue and white traps, which were not significantly different. Although the number of adult psyllid captured on all trap types significantly increased with time during the trapping period, the performance of traps did not change with time. Trap catches were also significantly influenced by the citrus species; traps placed on lemon trees captured more D. citri than those placed on sweet orange and grapefruit, suggesting that plant preference exhibited by D. citri may influence the performance of traps. The ratio of trap reflectance between the 680 to 700 nm and the 450 nm was significantly correlated with total trap catches in all host species studied. Thus, this index was a good indicator of the attractiveness of adult D. citri to colored traps. Additionally, we compared the reflectance values of young versus mature flush shoots of the three host plants used in this study as related to densities of D. citri recorded in colored traps. We discussed the importance of visual cues in the host finding behavior of adult D. citri.  相似文献   

12.
Abstract  Management of thrips in a hydroponic strawberry crop near Sydney, New South Wales, was studied from 1999 to 2002. The main species present were western flower thrips, Frankliniella occidentalis (Pergande), plague thrips, Thrips imaginis Bagnall, and, occasionally, onion thrips, Thrips tabaci Lindeman. Their within- and between-plant distribution and the degree and type of damage caused are described, and used to recommend action thresholds. Flowers are identified as the primary monitoring site, and young green fruit as the key damage site. Action thresholds of approximately 45% of flowers with 5 or more adult western flower thrips, or 40% of flowers with 10 or more adult plague thrips are recommended. Alternative thresholds using all motile stages are given for flowers, and for young green and red berries. A higher tolerance is recommended during cool, wet periods.  相似文献   

13.
The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a cosmopolitan, polyphagous insect pest that causes bronzing to fruit of strawberry (Fragaria x ananassa). The main aim of this study was to test whether mass trapping could reduce damage and to predict whether this approach would be economically viable. In semi-protected strawberry crops, mass trapping of F. occidentalis using blue sticky roller traps reduced adult thrips numbers per flower by 61% and fruit bronzing by 55%. The addition of the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, reduced adult thrips numbers per flower by 73% and fruit bronzing by 68%. The factors affecting trapping efficiency through the season are discussed. Damage that would result in downgrading of fruit to a cheaper price occurred when bronzing affected about 10% of the red fruit surface. Cost-benefit analysis using this threshold showed that mass trapping of thrips using blue sticky roller traps can be cost-effective in high-value crops. The addition of blue sticky roller traps to an integrated pest management programme maintained thrips numbers below the damage threshold and increased grower returns by a conservative estimate of £2.2k per hectare. Further work is required to develop the F. occidentalis aggregation pheromone for mass trapping and to determine the best timing for trap deployment. Mass trapping of thrips is likely to be cost-effective in other countries and other high-value crops affected by F. occidentalis damage, such as cucumber and cut flowers.  相似文献   

14.
Populations of onion thrips, Thrips tabaci Lindeman, from commercial onion fields in New York were evaluated for their susceptibility to the commonly used pyrethroid, lambda-cyhalothrin (Warrior T), using a novel system called the Thrips Insecticide Bioassay System (TIBS). To use TIBS, thrips are collected directly from the plant into an insecticide-treated 0.5-ml microcentrifuge tube that has a flexible plastic cap with a small well into which 0.08 ml of a 10% sugar-water solution with food colorant is deposited. The solution is sealed into the well with a small piece of stretched parafilm through which the thrips can feed on the solution. Thrips mortality is assessed after 24 h with the help of a dissecting stereoscope. In 2001, onion thrips populations were collected from 16 different sites and resistance ratios were >1,000 in five populations. Percent mortality at 100 ppm, a recommended field rate, varied from 9 to 100%, indicating high levels of variation in susceptibility. Particular instances of resistance appeared to be the result of practices within an individual field rather than a regional phenomenon. In 2002, we also observed large differences in onion thrips susceptibility, not only between individual fields but also between thrips collected in a single field at mid season and late season, again suggesting that insecticide-use practices within an individual field caused differences in susceptibility. Additional tests indicated no differences in susceptibility between adult and larval onion thrips populations and only relatively minor differences between populations collected from different parts of the same field. Using TIBS, several populations of onion thrips with different susceptibilities to lambda-cyhalothrin were identified and then subjected to lambda-cyhalothrin-treated onion plants. There was a highly significant positive relationship between percent mortality of thrips from TIBS and percent mortality from the treated onion plants, indicating that results from TIBS could be used to predict spray performance. These data suggest that use of TIBS for evaluating susceptibility to particular insecticides could be instrumental for developing a resistance management strategy for onion thrips.  相似文献   

15.
The behavioural responses of flying western flower thrips (Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) to the colour yellow and the odour anisaldehyde were examined. In a wind tunnel, upwind flight by female thrips was common in an airflow of 0.11 m s–1 but was impeded at 0.22 m s–1. In the absence of anisaldehyde, flying female thrips exhibited an oriented response towards a yellow cue in the wind tunnel at a wind speed of 0.11 m s–1. The main response of females to anisaldehyde in the wind tunnel was flight inhibition. There was no evidence of an odour-induced visual response, an odour-induced anemotactic response or chemotaxis by female thrips to anisaldehyde in wind tunnel bioassays, but chemokinesis was implicated. With a matrix of yellow or black water traps with and without anisaldehyde in a greenhouse sweet pepper crop, yellow traps with anisaldehyde caught more thrips adults than yellow traps without anisaldehyde, black traps with anisaldehyde and black traps without anisaldehyde (1.3, 28 and 721 times for males respectively and 2.4, 9 and 117 times for females, respectively). Differences between respective traps were statistically significant in almost all cases. Trapping experiments using a centre-baited trap design to reduce the interaction of anisaldehyde between baited and unbaited traps were undertaken in tomato and sweet pepper greenhouse crops. When the spatial distribution of the thrips adult population within the greenhouse was taken into account, yellow water traps with anisaldehyde caught between 11 and 15 times more female and 3 and 20 times more male F. occidentalis adults than yellow traps without anisaldehyde.  相似文献   

16.
Studies were conducted in Kansas corn and soybean fields during 1997 to compare various sampling methods, traps, and trap components for capturing three species of adult corn rootworms: western (Diabrotica virgifera virgifera Leconte), southern (D. undecimpunctata howardi Barber), and northern (D. barberi Smith & Lawrence). Lure constituents affected the species of beetle attracted to the trap. Traps with a lure containing 4-methoxycinnamaldehyde attracted more western corn rootworms, those with a lure containing eugenol were more attractive to northern corn rootworms, and those containing trans-cinnamaldehyde were most attractive to southern corn rootworms. Multigard sticky traps caught more beetles than did Pherocon AM sticky traps. In corn, a newly designed lure trap caught more beetles than did sticky traps on most occasions. Also, lure-baited sticky traps caught more beetles than did nonbaited sticky traps. Varying the color of the lure trap bottom did not affect the number caught. In soybeans, the new lure traps captured more beetles than did the nonbaited Multigard or Pherocon AM sticky traps. Results of this study suggest the new lure trap may provide a more accurate assessment of corn rootworm populations than traditional monitoring techniques and may be more esthetically pleasing to growers and consultants.  相似文献   

17.
Populations of several thrips species were estimated using yellow sticky traps in an orchard planted with mango, Mangifera indica L. during the dry and wet seasons beginning in late 2008-2009 on Penang Island, Malaysia. To determine the efficacy of using sticky traps to monitor thrips populations, we compared weekly population estimates on yellow sticky traps with thrips population sizes that were determined (using a CO(2) method) directly from mango panicles. Dispersal distance and direction of thrips movement out of the orchard also were studied using yellow sticky traps placed at three distances from the edge of the orchard in four cardinal directions facing into the orchard. The number of thrips associated with the mango panicles was found to be correlated with the number of thrips collected using the sticky trap method. The number of thrips captured by the traps decreased with increasing distance from the mango orchard in all directions. Density of thrips leaving the orchard was related to the surrounding vegetation. Our results demonstrate that sticky traps have the potential to satisfactorily estimate thrips populations in mango orchards and thus they can be effectively employed as a useful tactic for sampling thrips.  相似文献   

18.
不同色板对柑橘园蓟马的诱集效果及蓝板的诱捕效果   总被引:3,自引:0,他引:3  
通过对黄色、蓝色、深蓝色、白色、红色、绿色、紫色、灰色、黑色和粉红色10种不同颜色色板对柑橘园蓟马的诱集效果的比较试验表明,柑橘园蓟马对蓝色和深蓝色色板趋性最大,与其它8种颜色色板之间有着极显著差异(P<0.01)。蓝色色板对蓟马在东南西北4个不同方位中的诱捕作用研究表明,南面方位诱集的蓟马数量最多,与西、北两个方位之间有着显著差异(P<0.05)。当平均株高为220cm时,挂板高度分别为60、120、180和240cm,高度为120cm时诱集的蓟马数量最多,与其它3个高度之间存在显著差异。色板间距分别为2、3、4和5m时,结果表明间距为4m和5m时每板诱集的蓟马数量较多,与其它间距之间有着显著差异。从上午8点到下午6点每间隔2h的5个时间段中,各时间段之间没有显著差异。在蓝色色板的小区防治试验中,在挂板3、6和12d后,诱捕效果分别达到41.5%,53.9%和37.7%。  相似文献   

19.
A series of field trials were used to assess the practicality of using sticky traps to monitor populations of green spruce aphid, Elatobium abietinum (Walker), in plantations of Sitka spruce. The highest numbers of alate E. abietinum were caught on sticky traps placed in the upper third of the live canopy at 9-17 m above the ground, whereas low numbers of aphids were caught just below the live canopy or at 2 m above the ground. Trials in 2005 with sticky traps of different colors showed that significantly more alate E. abietinum were caught on yellow, red, and green sticky traps than on white, blue, and black traps. A repeat trial in 2007 resulted in significantly more alate aphids being caught on red sticky traps than on traps of any other color except for green. Attraction to red is unusual among aphids, as aphids are thought not to possess a red-sensitive photoreceptor. The attraction of E. abietinum to red-colored sticky traps suggests that conifer-feeding aphids might have a fundamentally different color response compared with aphids that live on cereals, grasses, or herbaceous plants. Alternatively, the attraction to red might be a physiological artifact related to the presence of red-screening pigments in the aphid's compound eye.  相似文献   

20.
Improved laboratory methods are described in detail for mass rearing of various thrips species, such as Frankliniella occidentalis, Frankliniella intonsa, Thrips palmi, Thrips tabaci (Thysanoptera: Thripidae) and a thrips parasitoid, Ceranisus menes (Hymenoptera: Eulophidae), using various foods. In one method, plant pollen and honey solution are used as food sources. In a second method, germinated broad bean seeds are used. Eggs, produced in large numbers in water, are collected by a suction funnel onto a filter paper and incubated in a Petri dish. Large numbers of larvae that hatch are collected by using food traps (plant pollen). Larvae can be reared on pollen or on germinated broad bean seeds until adult emergence without additional water and food. This method has been found useful for producing even-aged thrips at different densities (up to 500 larvae in a cage of 80 mm diameter) with relatively low mortality rates. Evaluation of this rearing method for F. intonsa, shows that during 2 weeks at 20 °C per 100 females more than 4000 females could be produced in the next generation. About 5 min per day is required to achieve this productivity of mass production. The method is also suitable for producing large numbers of the solitary endoparasitoid of thrips larvae, C. menes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号