首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   

2.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

3.
The region of elongation in Cucumis sativus and Cucurbita maxima roots was marked at increasing distances from the apex to provide an analog of increasing cell size. These roots were exposed/sham-exposed to 60 Hz electric fields and the growth rates of the root segments measured. The growth rate effect magnitude varied with increasing distance from the root tip at constant field strength, and with increasing applied field strength. These results provide strong, qualitative support for the postulate that ELF transmembrane potential induction is involved in the stimulation of ELF electric field effects in the plant root model system.  相似文献   

4.
A vibrating probe was used to measure the changes in ionic currents around gravistimulated roots of Zea mays L. in an effort to determine whether these currents are involved in stimulus transduction from the root cap to the elongation zone. We did not observe a migration of the previously reported auxin-insensitive current efflux associated with gravity sensing (T. Björkman, A.C. Leopold [1987] Plant Physiol 84:841-846) back from the root cap. Instead, beginning 10 to 15 min after gravistimulation, an asymmetry in current developed simultaneously along the root around the meristem and apical regions of the elongation zone. This asymmetry comprised a proton efflux from the upper surface, which was superimposed on the symmetrical pattern around the vertical root. The gravity-induced proton efflux was inhibited by the application of the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, whereas the calcium channel blocker, lanthanum, had little effect. Because the onset of the gravity-induced current asymmetry coincided both spatially and temporally with the onset of the differential growth response, we suggest that this current efflux may result from auxin-requiring acid-growth phenomena in the upper root tissue. The implications of this simultaneous onset of both proton efflux and elongation for theories about gravity stimulus transduction are discussed.  相似文献   

5.
Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high‐resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.  相似文献   

6.
Root growth and cell differentiation were analysed in lentil seedlings grown (1) in microgravity (F microg), (2) on the 1 x g centrifuge (F1 x g), (3) in microgravity and placed on the 1 x g centrifuge for 4 h [F(microg + 1 x g)], (4) on the 1 x g centrifuge and placed in microgravity for 4 h [F(1 x g + microg)]. In microgravity, there were strong oscillations of the root tip, even when the seedlings were grown first on the 1 x g centrifuge [F(1 x g + microg)]. In the [F(microg + 1 x g)] sample, the roots grown in microgravity were oblique with respect to the 1 x g acceleration when the seedlings were placed on the centrifuge. They were therefore gravistimulated. However, root length was similar in the 4 samples after 29 h of growth and growth rate of the root was the same between 25 h and 29 h although it appeared to be slightly greater in the [F(microg + 1 x g)] sample. Cell elongation was analysed as a function of the distance from the root cap junction. Cell length was similar in the seedlings grown in microgravity or on the 1 x g centrifuge. The transfer from the 1 x g centrifuge to microgravity [F(1 x g + microg)] did not modify cell elongation in the roots. Cell length in the roots which were grown in microgravity and gravistimulated [F(microg + 1 x g)] was different from that observed in microgravity but this was only due to gravistimulation. Thus, gravity does not have an effect on cell elongation when the roots are strictly oriented in the vertical position but it does as soon as the root tip deviates from this orientation.  相似文献   

7.
The regulation of cellular growth is of vital importance for embryonic and postembryonic patterning. Growth regulation in the epidermis has importance for organ growth rates in roots and shoots, proposing epidermal cells as an interesting model for cellular growth regulation. Here we assessed whether the root epidermis is a suitable model system to address cell size determination. In Arabidopsis thaliana L., root epidermal cells are regularly spaced in neighbouring tricho- (root hair) and atrichoblast (non-hair) cells, showing already distinct cell size regulation in the root meristem. We determined cell sizes in the root meristem and at the onset of cellular elongation, revealing that not only division rates but also cellular shape is distinct in tricho- and atrichoblasts. Intriguingly, epidermal-patterning mutants, failing to define differential vacuolization in neighbouring epidermal cell files, also display non-differential growth. Using these epidermal-patterning mutants, we show that polarized growth behaviour of epidermal tricho- and atrichoblast is interdependent, suggesting non-cell autonomous signals to integrate tissue expansion. Besides the interweaved cell-type-dependent growth mechanism, we reveal an additional role for epidermal patterning genes in root meristem size and organ growth regulation. We conclude that epidermal cells represent a suitable model system to study cell size determination and interdependent tissue growth.  相似文献   

8.
The gravitropic bending of maize roots, as a response to reorientation of the root within a gravitational field, was examined for sensitivity to exogenous applications of the cytoskeletal inhibitor, cytochalasin D. Agar blocks were impregnated with this inhibitor, and were applied either to the root cap or to the zone of root cell elongation. Root growth was normal with either treatment, if the roots were not repositioned with respect to the gravitational vector. When untreated roots were placed in a horizontal position with respect to gravity, a 40 degree bending response was observed within one hour. This bending also occurred when cytochalasin D was applied at high concentrations to the zone of root cell elongation. However, when cytochalasin D above 40 micrograms/ml was applied to the root cap, roots lost the ability of directional reorientation within the gravitational field, causing a random bending.  相似文献   

9.
Summary Using a vibrating probe technique, four distinct electric patterns around growing cress roots were observed. The growth rate of the root with a particular one of them was apparently faster than that with the others. No direct correlation between the intensity of electric field and the root growth rate could be found. When gravistimulation was applied to the root, the electric pattern changed to be suitable for elongation of the gravitropic curvature. It is probable that change in electric pattern is related to growth of the root under a given environment.  相似文献   

10.
Root distribution determines largely the zone of soil that roots have access to for water and nutrient uptake, and is of great importance especially if water and fertilizer input is restricted. Mechanical impedance is the major limitation to root elongation in many field soils. Until now, experiments have focused largely on the axial resistance to root growth. In a fascinating study of the radial forces exerted by the roots of chickpea, root extension, diameter change, and the radial forces that axially unimpeded roots exert are reported: Kolb et al. (this volume) record radial stresses of about 0.3?MPa that are broadly consistent with cell turgor pressures, but, interestingly, find no restriction to axial elongation. This result is in marked contrast to large decreases in elongation of pea radicles resulting from much smaller axial pressures reported elsewhere in the literature (e.g., an 85?% decrease in root elongation in response to axial pressures of?<?0.1?MPa). The situation is different also from that in homogeneous soil, where root penetration resistance pressures of 0.4-1.0?MPa are typically required to halt root elongation. Soil structure and strength properties will determine the balance of axial and radial pressures on an individual root tip, and hence the root elongation response. It appears that a degree of radial confinement may help roots to extend axially into hard soil. This result also complements recent findings that in strong field soils the availability of soil macropores has a large influence on regulating the root-elongation rates of seedlings.  相似文献   

11.
The chemically induced barley (Hordeum vulgare L.) mutation, agr, was found to be a simple recessive trait resulting in agravitropic roots and normal gravitropic shoots. The total seedling root growth was similar for mutant and wild-type roots, although the mutant had fewer roots per seed and greater elongation per root. Although the concentration of exogenous indole-3-acetic acid (IAA) required to reduce root growth by 50% (GR50) was 12 times greater for the agravitropic mutant, agravitropic and gravitropic roots were equally sensitive to exogenous applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA). Root IAA contents, determined by high-pressure liquid chromatography (HPLC), were not different for gravitropes and agravitropes. The greater root elongation rates, lack of sensitivity to exogenous IAA, and normal endogenous IAA levels indicate that auxin-controlled growth regulation may be altered in the mutant.  相似文献   

12.
A brief account is given of the discovery of abscisic acid (ABA) in roots and root caps of higher plants as well as the techniques by which ABA may be demonstrated in these tissues. The remainder of the review is concerned with examining the rôle of ABA in the regulation of root growth. In this regard, it is well established that when ABA is supplied to roots their elongation is usually inhibited, although at low external concentrations a stimulation of growth may also be found. Fewer observations have been directed at exploring the connection between root growth and the level of naturally occurring, endogenous ABA. Nevertheless, the evidence here also suggests that ABA is an inhibitory regulator of root growth. Moreover, ABA appears to be involved in the differential growth that arises in response to a gravitational stimulus. Recent reports that deny a rôle for ABA in root gravitropism are considered inconclusive. The response of roots to osmotic stress and the changes in ABA levels which ensue, are summarised; so are the interrelations between ABA and other hormones, particularly auxin (e.g. indoleacetic acid); both are considered in the context of the root growth and development. Quantitative changes in auxin and ABA levels may together provide the root with a flexible means of regulating its growth.  相似文献   

13.
Thick roots elongate faster than thinner ones. However, within one species, the growth achieved by roots of a given diameter can be very variable, and root diameter can only be considered as a determinant of root potential elongation rate. As root elongation is highly correlated to carbon availability, it can be hypothesized that local competition for resources, expressed as the number of lateral roots per unit length (i.e. the branching density), modulates root elongation. Using novel methods in field conditions, we have estimated apical diameters, elongation rates and growth durations of nearly 3500 banana lateral roots, in a field experiment with high radiations and a shaded glasshouse experiment with low radiations. Apical diameters and branching densities were lower in the experiment with low radiation, but elongation rates were higher. In both experiments, mean elongation rates of first-order laterals and thick second-order laterals were negatively correlated with bearing root branching densities. It is hypothesized that, even though apical diameters were lower, low branching densities in the shaded glasshouse allowed enhanced lateral root elongation. In both experiments, second-order laterals elongated more slowly than first-order laterals of similar diameter. A specific effect of root order, independent of branching density and apical diameter, contributed to explain these slow second-order lateral elongation rates. Most lateral roots elongated between 9 and 21 days and growth duration was mainly correlated with root diameter.  相似文献   

14.
The minimum dose (dose = stimulus x time), one of three threshold values related to gravity, was determined under microgravity conditions for cress roots. Seedlings were cultivated on a 1g centrifuge in orbit and under microgravity, respectively. After continuous stimulation on a threshold centrifuge, minimum doses of 20-30 gs for microgravity roots and 50-60 gs for roots grown on a 1g centrifuge were estimated, which indicated that microgravity roots have a higher sensitivity than 1g roots. These results do not confirm the threshold value of 12gs which was determined for cress roots using the slow rotating clinostat. Following application of intermittent stimuli to microgravity-grown roots, gravitropic responses were observed after two stimuli of 13.5 gs separated by a stimulus-free interval of 118s. Generally, this demonstrates that higher plants are able to 'sum up' stimuli which are below the threshold value. Microscopic investigations of the cellular structure corresponding to stimulations in the range of the threshold value demonstrated a small displacement of statoliths in root statocytes. No significant correlation was observed between gravitropic curvature and statolith displacement. If the statolith theory is accepted, it can be concluded that stimulus transformation must occur in the cytoplasm in the near vicinity of the statoliths and that this transformation system--probably involving cytoskeletal elements--must have been affected during microgravity seedling cultivation.  相似文献   

15.
16.
The existence of relationships between intercepted photo-synthetic photon flux density (PPFD) and growth of individual organs is somewhat controversial. We have tested whether such relationships could account for the natural variability in elongation rates of taproot and secondary roots of sunflower (from 2 to 135 mm d−1), in field and laboratory conditions. Elongation of taproot and secondary roots was recorded daily through windows in the field. A range of PPFD was obtained by following day-to-day natural fluctuation for three contrasting growing periods, and by shading part of the plants under study. A parallel experiment was carried out in a growth chamber with contrasting light intensities and with a 14CO2 labelling experiment. After the two-leaf stage, i.e. when the contribution of photosynthetic carbon became appreciable in root growth, daily root elongation rate was closely linked to the PPFD intercepted from 36 to 12 h before the measurement of root elongation. Curvilinear relationships applied to plants grown in the field as well as in a growth chamber, and to shaded plants as well as to plants subjected to day-to-day changes in intercepted PPFD. For a given intercepted PPFD, the taproot elongated faster than secondary roots, and secondary roots originating near the base of the taproot elongated faster than those originating near the apex. The elongation rate of any secondary root apex was accounted for (r= 0.77) by the ratio of intercepted PPFD to the distance between the apex and the base of the taproot. No relationships between intercepted PPFD and elongation rate were observed before the two-leaf stage, when the CO2 labelling experiment suggests that carbon essentially originates from the seed. Therefore, this study suggests a role for source-sink relations in the distribution of elongation between apices and a role for carbon nutrition in day-to-day variations of root elongation rate. Precise mechanisms explaining this behaviour remain to be investigated.  相似文献   

17.
The anatomy, cytoskeleton orientation, and thickness of the cell wall of the root growth zones generated de novo in vitro under clinorotation (simulated microgravity) were studied. The anatomical structure of the roots generated de novo from the cambium cells of the leaf explant petiole is similar to the structure of embryonic roots. The root cell differentiation in vitro during the clinorotation does not differ from the control in main features. Changes in the tubulin cytoskeleton orientation under clinorotation were detected in the epidermis of distal elongation zone (that is apparently associated with specific physiological properties of the cells in this zone). A tendency towards the thinning of the root cell walls in vitro under conditions of simulated microgravity was established.  相似文献   

18.
We investigated peculiarities of growth of aerial roots in a hemiepiphyte Monstera deliciosa. Aerial roots show low absolute and relative rates of growth and have an extensive elongation zone. In contrast to common roots, cell elongation in the elongation zone of aerial roots may last for 30 days and sometimes longer. The length of cortex cells increases in direct proportion to the distance from the root tip. This means that there is no drastic change in the relative rate of growth associated with transition to elongation characteristic of common roots. Distribution of growth over the elongation zone of aerial roots is irregular. Within the elongation zone, the cells of rhizodermis can divide, and divisions are distributed nonuniformly. The contact between neighboring growing polycytes (cell complexes) is presumably associated with their sliding against one another (intrusive growth). By the example of aerial roots of Monstera deliciosa, we showed a particular type of growth organization in the root with an extensive elongation zone differing from the growth of common roots and resembling the growth of leaves, stems, and fleshy fruit of dicotyledons.  相似文献   

19.
The developmental response of the Arabidopsis root system to low phosphorus (P) availability involves the reduction in primary root elongation accompanied by the formation of numerous lateral roots. We studied the roles of selected redox metabolites, namely, radical oxygen species (ROS) and ascorbic acid (ASC) in the regulation of root system architecture by different P availability. Rapidly growing roots of plants grown on P-sufficient medium synthesize ROS in root elongation zone and quiescent centre. We have demonstrated that the arrest of root elongation at low P medium coincides with the disappearance of ROS from the elongation zone. P-starvation resulted in a decrease in ascorbic acid level in roots. This correlated with a decrease in cell division activity. On the other hand, feeding P-deficient plants with ASC, stimulated mitotic activity in the primary root meristem and partly reversed the inhibition of root growth imposed by low P conditions. In this paper, we discuss the idea of the involvement of redox agents in the regulation of root system architecture under low P availability.Key words: ascorbic acid, phosphate deficiency, primary root, radical oxygen species, root growth, root system architecture  相似文献   

20.
When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several steps of the root gravireaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号