首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin regulates cardiovascular functions during embryogenesis and adulthood. However, the source of serotonin in the cardiovascular system and the role of circulating serotonin and serotonin transporter (SERT) in the regulation of cardiovascular functions are still unclear. We used a cell fate approach to map the regions of the mouse heart expressing SERT, utilizing a Cre/loxP system driven by SERT gene expression. Cell labelling was first detected at E10.5 and was mapped until E18.5. We found labelling in the outflow tract, part of right ventricle and to a very limited extent in the left ventricle. Interestingly, the distribution pattern of SERT-fated cells was remarkably similar to that obtained with markers of the second heart field lineage. In addition, we observed staining of atrioventricular valves, consistent with valvular abnormalities observed in SERT-/-animals. Overall, our data reveal specific and regionally restricted distribution of SERT-expressing cells in the developing heart of mouse.  相似文献   

2.
The noradrenaline (NA) and serotonin reuptake inhibitor, sibutramine, gives effective weight loss, but full efficacy cannot be attained at approved doses due to cardiovascular side effects. We assessed in rats the contributions of NA and serotonin transporters to sibutramine's hypophagic and cardiovascular effects, and whether selective 5‐hydroxytryptamine (5‐HT1A) receptor activation could counteract the latter without affecting the former. Food intake was assessed in freely feeding rats and cardiovascular parameters in conscious telemetered rats. Ex vivo radioligand binding was used to estimate brain monoamine transporter occupancy. Sibutramine (1–10 mg/kg p.o.) dose‐dependently reduced food intake; however, 10 mg/kg p.o. markedly elevated blood pressure and heart rate. Sibutramine gave greater occupancy of NA than serotonin reuptake sites. Coadministration of the selective 5‐HT1A agonist F‐11440 (2.5 mg/kg p.o.) attenuated sibutramine‐induced hypertension and tachycardia without altering its food intake effects. The selective NA reuptake inhibitors, nisoxetine or reboxetine, did not alter food intake alone, but each reduced food intake when combined with F‐11440. These results suggest that sibutramine‐induced hypophagic and cardiovascular effects are largely due to increased brain synaptic NA via NA reuptake inhibition, and that 5‐HT1A activation can counter the undesirable cardiovascular effects resulting from increased sympathetic activity. Selective NA reuptake inhibitors did not reduce food intake alone but did when combined with 5‐HT1A activation. Hence increased synaptic serotonin, via serotonin reuptake inhibition or 5‐HT1A activation, together with increased NA, would appear to produce hypophagia. Thus weight loss with minimal cardiovascular risk could be achieved by 5‐HT1A activation combined with NA transporter blockade.  相似文献   

3.
Summary Serial histological sections of the interatrial septum and basal heart vessels of the weaned and juvenile white-belly opossum (Didelphis albiventris) were obtained in order to study the presence of paraganglia and their content of regulatory peptides and serotonin. Paraganglion groups were mapped between the aorta and pulmonary arteries and close to the bifurcation of the pulmonary trunk and were found to contain cells with immunoreactivity to serotonin and to the neuroendocrine markers PGP 9.5 and NSE. When these paraganglia were tested for immunoreactivity to a battery of regulatory peptides, all were found to be positive for methionin-enkephalin, leucine-enkephalin and galanin. The hypothesis is raised that these peptides and serotonin, besides catecholamines, produced by these paraganglia may play a physiological role in the functions of the cardiovascular system of the white-belly opossum.Work supported by grants from FINEP and CNPq (Brazil).  相似文献   

4.
NO is the "hero" molecule of the last few decades. It is a ubiquitous and omnipotent radical with both hemodynamic and antiproliferative effects within the cardiovascular system. NO is an important counterregulatory factor for vasoconstrictors and growth promoting substances. Endothelial dysfunction with decreased NO production is related to many cardiovascular disorders, such as coronary artery disease, heart failure and hypertension. Despite the important role of NO within the circulation, there is only limited evidence in the form of large clinical trials that NO delivery can reduce cardiovascular morbidity and mortality. Thus, NO donors are not in the first line therapy in ischemic heart disease, heart failure or arterial hypertension and NO delivery is recommended only in particular clinical situations, when a well established treatment is contraindicated or has an insufficient effect. It is concluded that the insufficient NO production is the principal disorder in endothelial dysfunction, which is related to cardiovascular pathology with deteriorated prognosis, but the impact of therapeutically increased NO bioactivity on the morbidity and mortality is inferior to well established treatment with ACE-inhibitors, AT(1) receptor blockers, beta-blockers, statins and certain antihypertensive drugs. There is little doubt that NO is king in the circulation, but kings seldom decide the battles.  相似文献   

5.
The mechanism underlying the modulation, by dextroamphetamine and compounds related to phenylethanolamine, of responses to dopamine and serotonin has been studied in the isolated ventricle and aortic bulb of the clam Tapes watlingi. Dextroamphetamine and phenylethanolamine but not cocaine and benztropine have the ability to unmask inhibitory responses to both dopamine and serotonin in the ventricle. Chlordimeform but not clozapine attenuates the inhibitory response to both dextroamphetamine and phenylethanolamine in concentrations which have little or no effect on the inhibitory response to dopamine in the ventricle. Phenylethanolamine, dextroamphetamine, phenylpropylolamine and p-chloro-phenylethanolamine but not octopamine or noradrenaline attenuate the contractile responses to both dopamine and serotonin in preparations of the quiescent aortic bulb. These data show that there are specific receptors for phenylethanolamine in the Tapes heart capable of modulating responses to dopamine and serotonin, and suggests that this biogenic phenethylamine can act as an environmental and physiological factor which may determine how the mollusc heart responds to dopamine.  相似文献   

6.
Depressive disorders and cardiovascular disease are inter-connected by a whole range of pathophysiological mechanisms. Three biological mechanisms are fundamental: activation of the hypothalamus-hypohysis-adrenal axis with a subsequent increase in sympathetic-adrenal system activity, decrease in vagal tone with a decrease in heart rate variability, and alterations of thrombogenesis with increased platelet aggregability. Behavioural mechanisms and psycho-social factors are also integral to this common pathophysiology. Recently, research has focused mainly on studying various forms of stress, as well as changes and possibilities of influencing the autonomous vegetative system. Temporal aspects of the incidence and development of depressive episodes in relation to cardiovascular disease and subsequent cardiovascular morbidity and mortality are being studied, as well as general mortality risk factors. These findings are important for clinical practice. It is evident that in patients with untreated depressive disorder, the risk of developing cardiovascular disease is significantly higher than in patients suffering from a depressive disorder being treated with anti-depressants. From the data published so far, it may be surmised that depressive disorders in patients with cardiovascular disease may be reliably and safely treated with anti-depressants that act as inhibitors of serotonin re-uptake.  相似文献   

7.
The majority of children with congenital heart disease now live into adulthood due to the remarkable surgical and medical advances that have taken place over the past half century. Because of this, adults now represent the largest age group with adult cardiovascular diseases. It includes patients with heart diseases that were not detected or not treated during childhood, those whose defects were surgically corrected but now need revision due to maladaptive responses to the procedure, those with exercise problems and those with age-related degenerative diseases. Because adult cardiovascular diseases in this population are relatively new, they are not well understood. It is therefore necessary to understand the molecular and physiological pathways involved if we are to improve treatments. Since there is a developmental basis to adult cardiovascular disease, transforming growth factor beta (TGFβ) signaling pathways that are essential for proper cardiovascular development may also play critical roles in the homeostatic, repair and stress response processes involved in adult cardiovascular diseases. Consequently, we have chosen to summarize the current information on a subset of TGFβ ligand and receptor genes and related effector genes that, when dysregulated, are known to lead to cardiovascular diseases and adult cardiovascular deficiencies and/or pathologies. A better understanding of the TGFβ signaling network in cardiovascular disease and repair will impact genetic and physiologic investigations of cardiovascular diseases in elderly patients and lead to an improvement in clinical interventions.  相似文献   

8.
Gamma-hydroxybutyrate (GHB) and its metabolic precursor, 1,4-butanediol (BDL), are widely used recreational drugs. Although most commonly described as CNS depressants, GHB and BDL elicit significant sympathomimetic cardiovascular responses [increases in mean arterial pressure (MAP) and heart rate] when administered parenterally. Given that humans most commonly ingest both drugs orally, we examined the dose-response relationships for intragastrically administered GHB and BDL on MAP and heart rate in conscious rats using radiotelemetry. The intragastric administration of GHB increased MAP. BDL increased both MAP and heart rate and was approximately 10-fold more potent as a cardiovascular stimulant than GHB when administered intragastrically. Pretreatment with ethanol prevented the lethality of BDL. These data indicate that 1) both GHB and BDL produce cardiovascular responses when administered intragastrically and 2) BDL is more potent and potentially more dangerous than GHB when administered via this route.  相似文献   

9.
Gamma-hydroxybutyrate (GHB) and its metabolic precursor, 1,4-butanediol (BDL), are widely used recreational drugs. Although most commonly described as CNS depressants, GHB and BDL elicit significant sympathomimetic cardiovascular responses [increases in mean arterial pressure (MAP) and heart rate] when administered parenterally. Given that humans most commonly ingest both drugs orally, we examined the dose-response relationships for intragastrically administered GHB and BDL on MAP and heart rate in conscious rats using radiotelemetry. The intragastric administration of GHB increased MAP. BDL increased both MAP and heart rate and was approximately 10-fold more potent as a cardiovascular stimulant than GHB when administered intragastrically. Pretreatment with ethanol prevented the lethality of BDL. These data indicate that 1) both GHB and BDL produce cardiovascular responses when administered intragastrically and 2) BDL is more potent and potentially more dangerous than GHB when administered via this route.  相似文献   

10.
Cigarette smoke (CS) is a major risk factor for cardiovascular diseases, cancer, and other chronic degenerative diseases. UV-containing light is the most ubiquitous DNA-damaging agent existing in nature, but its possible role in cardiovascular diseases had never been suspected before, although it is known that mortality for cardiovascular diseases is increased during periods with high temperature and solar irradiation. We evaluated whether exposure of Swiss CD-1 mice to environmental CS (ECS) and UV-C-covered halogen quartz lamps, either individually or in combination, can cause DNA damage in heart and aorta cells. Nucleotide alterations were evaluated by (32)P postlabeling methods and by HPLC-electrochemical detection. The whole-body exposure of mice to ECS considerably increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and of bulky DNA adducts in both heart and aorta. Surprisingly, even exposure to a light that simulated solar irradiation induced oxidatively generated damage in both tissues. The genotoxic effects of UV light in internal organs is tentatively amenable to formation of unidentified long-lived mutagenic products in the skin of irradiated mice. Nucleotide alterations were even more pronounced when the mice were exposed to smoke and/or light during the first 5weeks of life rather than during adulthood for an equivalent period of time. Although the pathogenetic meaning is uncertain, DNA damage in heart and aorta may tentatively be related to cardiomyopathies and to the atherogenesis process, respectively.  相似文献   

11.
Kinetic parameters of monoamine deamination processes in the rat brain and heart after hyperbaric oxygenation (HBO) in toxic conditions (6 ata) were studied. HBO was shown to cause a substantial reduction in MAO affinity to serotonin in the brain, but not in the heart. Contrastingly, MAO affinity to dopamine was found to decrease in the heart, but not in the brain in response to HBO. Differences of tyramine and 2-phenylethylamine deamination in the rat brain and heart were also reciprocal following toxic HBO. In the initial phase of seizure episode MAO activity in the brain and heart was also different. Distinct mechanisms of adaptation to toxic oxygen in the central nervous system and cardiovascular system are discussed.  相似文献   

12.
Serotonin neurons of the caudal raphe facilitate ventilatory and sympathetic responses that develop following blood loss in conscious rats. Here, we tested whether serotonin projections to the caudal portion of the dorsomedial brain stem (including regions of the nucleus tractus solitarius that receive cardiovascular and chemosensory afferents) contribute to cardiorespiratory compensation following hemorrhage. Injections of the serotonin neurotoxin 5,7-dihydroxytryptamine produced >90% depletion of serotonin nerve terminals in the region of injection. Withdrawal of ~21% of blood volume over 10 min produced a characteristic three-phase response that included 1) a normotensive compensatory phase, 2) rapid sympathetic withdrawal and hypotension, and 3) rapid blood pressure recovery accompanied by slower recovery of heart rate and sympathetic activity. A gradual tachypnea developed throughout hemorrhage, which quickly reversed with the advent of sympathetic withdrawal. Subsequently, breathing frequency and neural minute volume (determined by diaphragmatic electromyography) declined below baseline following termination of hemorrhage but gradually recovered over time. Lesioned rats showed attenuated sympathetic and ventilatory responses during early compensation and later recovery from hemorrhage. Both ventilatory and sympathetic responses to chemoreceptor activation with potassium cyanide injection were attenuated by the lesion. In contrast, the gain of sympathetic and heart rate baroreflex responses was greater, and low-frequency oscillations in blood pressure were reduced after lesion. Together, the data are consistent with the view that serotonin innervation of the caudal dorsomedial brain stem contributes to sympathetic compensation during hypovolemia, possibly through facilitation of peripheral chemoreflex responses.  相似文献   

13.
Decreased exercise capacity negatively affects the individuals’ ability to adequately perform activities required for normal daily life and, therefore, the independence and quality of life. Regular exercise training is associated with improved quality of life and survival in healthy individuals and in cardiovascular disease patients. Also in patients with stable heart failure, exercise training can relieve symptoms, improve exercise capacity and reduce disability, hospitalisation and probably mortality. Physical inactivity can thus be considered a major cardiovascular risk factor, and current treatment guidelines recommend exercise training in patients with heart failure in NYHA functional classes II and III. Exercise training is associated with numerous pulmonary, cardiovascular, and skeletal muscle metabolic adaptations that are beneficial to patients with heart failure. This review discusses current knowledge of mechanisms by which exercise training is beneficial in these patients.  相似文献   

14.
15.
心力衰竭是各种心血管疾病发展的终末阶段,而心室重构贯穿于心衰发生、发展的全过程,阻断心室重构是防治心衰不容忽视的一个重要环节。结缔组织生长因子是一种新发现的具有多种生物学功能的成纤维细胞生长因子,在病理情况下,能抑制心肌细胞外基质的降解,促进心肌细胞的凋亡,与动脉粥样硬化、器官纤维化、创伤后修复及组织瘢痕形成等密切相关。作为参与心力衰竭后心室重构的细胞因子,不仅能够成为评价心衰患者临床预后的指标,还有望成为抗纤维化治疗的新靶点。  相似文献   

16.
Thyroid hormones are essential to maintain normal function of many systems including the cardiovascular system. Their excess or deficiency may upset human body homeostasis. Hyperthyroidism leads to cardiovascular system's hyperdynamic status which is characterized by tachycardia, increased difference between systolic and diastolic arterial pressure, significant increase of the stroke volume and improvement of the left ventricular diastolic function. Long-lasting thyrotoxicosis in patient with heart disease may result in atrial fibrillation, deterioration of angina pectoris or congestive heart failure. Hypothyroidism leads to hemodynamic disturbances which are quite different than those observed in hyperthyroidism, but cardiac symptoms are scant in clinical practice. Hypothyroidism's clinical significance is limited to atherosclerosis progression and intensification of ischaemic heart disease symptoms. Both leads to symptomatic cardiovascular system failure or its deterioration. We should emphasize that cardiovascular system dysfunction associated with thyrometabolic disturbances subsides when euthyreosis is restored. It sounds promising that there are reports suggesting a potential advantage of thyroxin treatment in patients with acute or chronic cardiovascular system diseases. These hypotheses result from the observations that heart dysfunction in hypothyroidism is similar to that observed in heart failure.  相似文献   

17.
Although the branchial and cardiovascular effects of serotonin (5-hydroxytryptamine) have only partially been characterized, a physiological role for serotonin in the cardiorespiratory responses of fish to environmental changes such as reduced Ph has been suggested. Therefore, we have characterized and compared the effects of serotonin and a rapid reduction of Ph in the ambient water (from pH 8.8 to pH 4.0) on ventral and dorsal aortic blood pressures, heart rate, cardiac output, and arterial pH in rainbow trout, Onchorhynchus mykiss. In addition, the circulation in the branchial microvasculature was observed using in vivo epi-illumination microscopy. The fall in water Ph and injection of serotonin (100 nmol/kg) both increased the branchial resistance and reduced the efferent filamental artery (EFA) blood velocity. Nevertheless, quantitatively, the responses to the two stimuli were different. Although acid exposure caused a much more profound increase in branchial resistance compared with serotonin, the blood flow in the observable distal portion of the EFA was only reduced by 60% in acid water, while it stopped with serotonin. Regardless of the marked branchial resistance elevation, a constriction of the efferent filamental vasculature could not be seen during acid exposure, as occasionally was the case with serotonin. While methysergide completely abolished the serotonin-induced branchial events, it only modestly suppressed the acid-induced reduction of EFA blood velocity. In contrast, all of the systemic changes induced by serotonin and acidic water were insensitive to methysergide. In conclusion, acidic water and injected serotonin elevate the branchial resistance, but the involvement of a serotonergic component in the acidic response appears negligible.  相似文献   

18.
Cardiac valve diseases are often due to developmental anomalies that progressively lead to the abnormal distribution and organization of extracellular matrix proteins overtime. Whereas mechanisms underlying adult valvulopathies are unknown, previous work has shown a critical involvement of the monoamine serotonin in disease pathogenesis. In particular, the interaction of serotonin with its receptors can activate transforming growth factor-β1 (TGF-β1) signaling, which in turn promotes extracellular matrix gene expression. Elevated levels of circulating serotonin can lead to aberrant TGF-β1 signaling with significant effects on cardiac valve structure and function. Additional functions of serotonin have recently been reported in which internalization of serotonin, through the serotonin transporter SERT, can exert important cytoskeletal functions in lieu of simply being degraded. Recent findings demonstrate that intracellular serotonin regulates cardiac valve remodeling, and perturbation of this pathway can also lead to heart valve defects. Thus, both extracellular and intracellular mechanisms of serotonin action appear to be operative in heart valve development, functionality, and disease. This review summarizes some of the salient aspects of serotonin activity during cardiac valve development and disease pathogenesis with an understanding that further elaboration of intracellular and extracellular serotonin pathways may lead to beneficial treatments for heart valve disease.  相似文献   

19.
A standard optokinetic response of the ipsilateral and contralateral (driven) eyes of the crab Leptograpsus variegatus to a sinusoidally oscillating striped drum was established. Optokinetic responses were then measured of animals that had been treated by introducing serotonin and octopamine into the blood stream via the heart and also into the neural tissue of the optic lobes via a micropipette. Both serotonin and octopamine enhance the optokinetic effect when applied in low doses. Experiments show that serotonin is most likely acting closer to the sensory input in the optokinetic system.  相似文献   

20.
In pithed rats, m-chlorophenylpiperazine (m-CPP) produced marked, dose-dependent (ED50 = 0.18 mumol) increases in mean arterial blood pressure which peaked within 1 minute and were sustained over 15 minutes. Two serotonin antagonists, metergoline and ritanserin, completely blocked the pressor responses to 2.5 mg/kg m-CPP in pithed adrenal demedullated rats, while alpha-adrenergic blockade by prazosin plus yohimbine was without effect, suggesting that the doubling in blood pressure produced by m-CPP was mediated via serotonin receptors within blood vessels. Somewhat smaller increases in blood pressure over baseline values were observed after m-CPP administration to conscious, freely moving rats. A small but statistically significant increase in heart rate peaked 5 minutes after m-CPP and also was blocked by metergoline but was only minimally affected by ritanserin or the prazosin-yohimbine combination. These results with m-CPP support other evidence for two or more separable effects of serotonergic agonists on the peripheral cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号