首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficacy of selenate and other divalent anions to stimulate the efflux of radiolabeled sulfate from lactating rat mammary tissue slices has been examined. Both selenate and sulfate markedly increased the fractional release of sulfate via a system that is temperature-sensitive and sensitive to the anion-exchange inhibitor DIDS. The effect of selenate on sulfate efflux was saturable with an apparent affinity constant of approximately 0.27 mM. In addition, molybdate and thiosulfate were also found to increase sulfate efflux from the trans-aspect. It is concluded that sulfate and selenate share a pathway for transport in the lactating rat mammary gland.  相似文献   

2.
The mammary gland o f a high-yielding cow may produce as much as 1–2 kg o f fat in a day. Studies reveal unique mechanisms at work to produce typical milk lipid.  相似文献   

3.
The efficacy of selenate and other divalent anions to stimulate the efflux of radiolabeled sulfate from lactating rat mammary tissue slices has been examined. Both selenate and sulfate markedly increased the fractional release of sulfate via a system that is temperature-sensitive and sensitive to the anion-exchange inhibitor DIDS. The effect of selenate on sulfate efflux was saturable with an apparent affinity constant of approximately 0.27 mM. In addition, molybdate and thiosulfate were also found to increase sulfate efflux from the trans-aspect. It is concluded that sulfate and selenate share a pathway for transport in the lactating rat mammary gland.  相似文献   

4.
C. Kanno 《Protoplasma》1990,159(2-3):184-208
Summary The lactating mammary gland is one of the most highly differentiated and metabolically active organs in the body. Membranes of the lactating mammary cell have important roles in transmitting from one membrane to another of hormonal information and in milk secretion, which is the final event. During milk secretion, the projection of the surface membrane into the alveolar lumen by enveloping intracellular lipid droplets with the apical plasma membrane is one of the most remarkable aspects of biological membrane action throughout nature.This review focuses on current knowledge about membranes in the lactating mammary gland. (1) Advances in the isolation and properties of membranes, especially the plasma membrane and Golgi-derived secretory vesicles, concerned with milk secretion from the lactating mammary gland are described. (2) Milk serum components are secreted by fusing the membranes of secretory vesicles that condense milk secretions with the plasma membrane in the apical regions. This occurs through the formation of a tubular-shaped projection and vesicular depression in a ball-and-socket configuration, as well as by simple fusion. (3) Intracellular lipid droplets are directly extruded from the mammary epithelial cells by progressive envelopment of the plasma membranes in the apical regions. (4) The balance between the surface volume lost in enveloping lipid droplets and that provided by fusion of the secretory vesicle and other vesicles with the apical plasma membrane is discussed. (5) The membrane surrounding a milk fat globule, which is referred to as the milk fat globule membrane (MFGM), is composed of at least the coating membrane of an intracellular lipid droplet, of the apical plasma membrane and secretory vesicle membrane, and of a coat material. Consequently, MFGM is molecularly different from the plasma membrane in composition. (6) MFGM of bovine milk is structurally composed of an inner coating membrane and outer plasma membrane just after segregation. These two membranes are fused and reorganized through a process of vesiculation and fragmentation to stabilize the fat globules. Hypothetical structural models for MFGM from bovine milk fat globules just after secretion and after rearrangement are proposed.Abbrevations MFGM milk fat globule membrane - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - INT 2-(p-indophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - Sph sphingomyelin - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PS phosphatidyl serine - PI phosphatidyl inositol - PAS periodic acid-Schiff reagent - CB Coomassie brilliant blue R-250 Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

5.
Function of arginase in lactating mammary gland   总被引:2,自引:3,他引:2  
The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornithine carbamoyltransferase, are both absent from this tissue. Instead, carbamoyl phosphate synthetase II appears early in lactation, associated with accumulation of aspartate carbamoyltransferase and DNA, consistent with the proposed role of these enzymes in pyrimidine synthesis. The facts require another physiological role for arginase apart from its known function in the urea cycle. Significant activity of ornithine aminotransferase develops in mammary gland in close parallel with the arginase. By this reaction, ornithine can be converted into glutamic semialdehyde and subsequently into proline. The enzymic composition of the lactating mammary gland is therefore appropriate for the major conversion of arginine into proline that is known to occur in the intact gland.  相似文献   

6.
7.
8.
9.
Acetate metabolism in the mammary gland of lactating ewes was studied by continuous infusion of radioisotopic [U-14C]sodium acetate and measurement of mammary gland arteriovenous difference and blood flow. Entry rate of acetate into the whole body averaged 75 +/- 7 mumol min-1 kg-1 liveweight and 22.1 +/- 2.7% of total CO2 production was derived from acetate. Acetate was both utilized and produced by the mammary gland. Acetate uptake was related linearly (r2 = 0.94) to arterial concentration and gross utilization of acetate accounted for 16.2 +/- 2.6% of whole-body entry rate. Endogenous acetate production by the mammary gland increased linearly (r2 = 0.90) as milk yield rose, and accounted for 25.6 +/- 2.7% of the gross mammary utilization of acetate. The proportion of mammary CO2 derived from acetate (22.5 +/- 3.9%) was similar to that of the whole body. The uptake of acetate, 3-hydroxybutyrate, esterified fatty acids and plasma free fatty acids accounted for about 25, 13, 60 and 4% of milk fatty acid carbon respectively, after correction for the oxidation of acetate, but not of the other substrates. Metabolism of acetate in the mammary glands of lactating ewes appears quantitatively more important than that in cows, but similar to that in goats.  相似文献   

10.
11.
A computer model representing the pentose cycle, the tricarboxylic acid cycle and glycolysis in slices of lactating rat mammary glands has been constructed. This model is based primarily on the studies, with radioactive chemicals, of Abraham & Chaikoff (1959) [although some of the discrepant data of Katz & Wals (1972) could be accommodated by changing one enzyme activity]. Data obtained by using [1-(14)C]-, [6-(14)C]- and [3,4-(14)C]-glucose were simulated, as well as data obtained by using unlabelled glucose (for which some new experimental data are presented). Much past work on the pentose cycle has been mainly concerned with the division of glucose flow between the pentose cycle and glycolysis, and has relied on the assumption that the system is in steady state (both labelled and unlabelled). This assumption may not apply to lactating rat mammary glands, since the model shows that the percentage flow through the shunt progressively decreased for the first 2h of a 3h experiment, and we were unable to construct a completely steady-state model. The model allows examination of many quantitative features of the system, especially the amount of material passing through key enzymes, some of which appear to be regulated by NADP(+) concentrations as proposed by McLean (1960). Supplementary information for this paper has been deposited as Supplementary Publication SUP 50023 at the British Museum (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.  相似文献   

12.
Metabolism of arginine in lactating rat mammary gland.   总被引:2,自引:1,他引:2       下载免费PDF全文
Significant activities of the four enzymes needed to convert arginine into proline and glutamate (arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and pyrroline-5-carboxylate dehydrogenase) develop co-ordinately in lactating rat mammary glands in proportion to the increased production of milk. No enzymes were detected to carry out the reactions of proline oxidation or reduction of glutamate to pyrroline-5-carboxylate. Minces of the gland converted ornithine into proline and into glutamate plus glutamine. These conversions increased during the cycle of lactation in proportion to the increased milk production and to the content of the necessary enzymes. The minced gland did not convert labelled ornithine into citrulline, confirming the absence from the gland of a functioning urea cycle, and did not convert labelled proline or glutamate into ornithine. A metabolic flow of labelled arginine to proline and glutamate in mammary gland was confirmed in intact animals with experiments during which the specific radioactivity of proline in plasma remained below that of the proline being formed from labelled arginine within the gland. It was concluded that arginase in this tissue had a metabolic role in the biosynthesis of extra proline and glutamate needed for synthesis of milk proteins.  相似文献   

13.
The cAMP-dissociation kinetics of rat mammary gland cytosols are dependent upon the temperature of cAMP association. Dissociation rates (measured at pH 6.5, 24 degrees C) were biphasic (k = 0.08-0.23 min-1 and k = 0.02 min-1) and monophasic (k-1 = 0.02 min-1) after 0 degrees C and 24 degrees C association, respectively. The temperature-dependent change from an initial fast rate to an initial slow rate was observed at all concentrations of cAMP tested from 1 to 1000 nM. When the slow-dissociating site was associated with non-radioactive 8-bromo-cAMP, the dissociation rates of [3H]-cAMP from the remaining dissociating site was slow (k = 0.02 min-1) and fast (k = 0.05 min-1) at 24 degrees C and 0 degrees C associating rate can be converted to the slow-dissociating rate by warming. When 0.2 M sodium thiocyanate was added to the association mixture at 24 degrees C, biphasic dissociation rates of k = 0.23 min-1 and k = 0.02 min-1 were observed, suggesting that the chaotropic salt blocks the interconversion of rates. The data are consistent with the model for cAMP-dependent protein kinase which exhibits two binding sites with different affinities. The type II enzyme from mammary gland cytosol exhibits in addition the phenomenon of temperature-dependent interconversion of the two binding affinities.  相似文献   

14.
15.
16.

Background

Somatic gene therapy requires safe and efficient techniques for the gene transfer procedure. The ovine mammary gland is described as a model system for the evaluation of somatic gene transfer methods.

Methods

Different gene delivery formulations were retrogradely injected into the mammary gland of lactating sheep. The efficiency of the gene transfer was subsequently measured by the detection of the secreted transgene products in the milk. To counteract the milk flow in the lactating gland caused by the permanent milk production, a newly developed pretreatment of the mammary gland with hyperosmotic solutions was applied. In addition, in vivo electroporation of DNA into the mammary gland is described.

Results

Gene transfer using naked DNA or simple complexes of DNA with polycations did not result in traceable amounts of reporter gene products. However, utilizing the complex cationic lipid DOSPER, a peak expression of about 400 ng/ml was observed 6 days after transfection. Maximum expression rates of more than 1 µg/ml were obtained by combining hyperosmotic pretreatment and receptor‐mediated gene transfer. For the in vivo electroporation, the proof of principle for this technique in the mammary gland is reported.

Conclusions

The ovine mammary gland turned out to be a very well suited as a model system for evaluation and optimization of various gene transfer protocols. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.
Iodide is an essential constituent of milk that is present in concentrations more than an order of magnitude higher than in the maternal plasma. Earlier, a sodium-iodide symporter was identified in the mammary gland; this transporter is presumed to take iodide from the maternal plasma into the alveolar epithelial cells of the mammary gland. We now report the existence of a second iodide transporter, pendrin, which is also essential for iodide accumulation in milk. Via Western blotting methods, high levels of the transporter were detected in lactating tissues; lesser amounts were found in tissues from midpregnant and virgin mice. Prolactin, at physiological concentrations, stimulated the expression of the pendrin transporter in cultured mammary tissues taken from 12- to 14-day-pregnant mice. The prolactin effect on iodide uptake into cultured mammary tissues was abolished by pendrin transport inhibitors, including DIDS, furosemide, and probenecid. These studies suggest that the prolactin stimulation of pendrin activity is an essential element in the prolactin stimulation of iodide uptake into milk.  相似文献   

18.
19.
1. Pyruvate carboxylase [pyruvate-carbon dioxide ligase (ADP), EC 6.4.1.1] was found in cell-free preparations of lactating rat and rabbit mammary glands, and optimum assay conditions for this enzyme were determined. 2. Subcellular-fractionation studies with marker enzymes showed pyruvate carboxylase to be distributed between the mitochondrial and soluble fractions of lactating rat mammary gland. Evidence is presented that the soluble enzyme is not an artifact due to mitochondrial damage. 3. In contrast, pyruvate carboxylase in lactating rabbit mammary gland is confined to the mitochondrial fraction. 4. The final product of pyruvate carboxylase action in the mitochondrial and particle-free supernatant fractions of lactating rat mammary gland was shown to be citrate. 5. The effects of freeze-drying, ultrasonic treatment and freezing-and-thawing on the specific activity of mitochondrial pyruvate carboxylase were investigated.  相似文献   

20.
Material which specifically binds oxytocin was prepared from a crude preparation of lactating rabbit mammary gland by purification on a sucrose density gradient. On examination of activities of enzyme markers and the molar ratio of cholesterol to phospholipid, this material was considered to be a highly purified plasma membrane fraction. For the determination of specificity and time course of oxytocin binding, a Scatchard plot analysis was carried out for the crude and purified fractions. Dissociation constant (Kd) and binding capacity values were found to be as follows: crude, Kd equals 1.83 X 10(-9) M, capacity equals 670 fmol/mg protein; purified, Kd equals 2.8 X 10(-9) M, capacity equals 1700 fmol/mg protein. Treatment of the purified material with different detergents resulted in loss of all [3H]oxytocin binding capacity. However, preincubation of this material with [3H]oxytocin prior to detergent treatment resulted in solubilization of a receptor-hormone complex. This complex remained in the supernatant even after centrifugation at 210 000 X g for 30 min. Using oxytocin analogs, we have shown this solubilized complex to be oxytocin specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号