首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylethanol (PEth) is a unique phospholipid that is formed in the body only in the presence of ethanol. According to a new hypothesis, blood high-density lipoprotein (HDL) particles may act as carriers of PEth and mediate part of the antiatherogenic effects of moderate alcohol drinking. Liquid chromatographic method using reversed-phase C8 column and negative ion mode electrospray ionization-mass spectrometry detection with time-of-flight (TOF) instrument was developed for the determination of very small amounts of PEth that might be present on blood HDL particles. The samples used in the current study were human HDL spiked with PEth and internal standard phosphatidylpropanol (PProp). The use of reversed-phase column enabled a short analysis time of 19 min/injection, which is only one-third of the earlier normal-phase methods reported. Because of the narrow bore column (2.1 mm i.d.) and short analysis time, the solvent consumption was decreased. The sensitivity of detection obtained with TOF-MS was better than that of previous methods, with the detection limit being as low as 1 ng/ml in injected sample (20 pg on-column approximately 28 fmol PEth), corresponding to approximately 6.7 ng of PEth in milliliter of unprepared HDL. Good linearity of detection was obtained for a range of 1-100 ng/ml of PEth, whereas all of the deviations in precision and accuracy were less than 15%.  相似文献   

2.
A sensitive method was developed for the simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography. The adenyl purines (adenine, adenosine, AMP, ADP, ATP and cyclic AMP) were derivatized using 2-chloroacetaldehyde for fluorescence detection, and the reaction and separation conditions were reinvestigated to improve sensitivity for small volume sample analysis. Each derivatized purine was separated on a Capcell Pack SG120A™ column with mobile phase consisting of 0.05 M citric acid–0.1 M dipotassium hydrogen phosphate (pH 4.0)–methanol (97+3). The detection limits were 100–1000 fmol/ml by fluorescence detection, some 500 times better than previous reports. The proposed method was applied to determine adenyl purines in human plasma. The purine levels were as follows: ATP (9.2–22.2 pmol/ml), ADP (5.5–22.2 pmol/ml), AMP (0.8–3.2 pmol/ml). Other purines, adenine, adenosine, cAMP were lower than 0.1 pmol/ml.  相似文献   

3.
A rapid, sensitive and specific high-performance liquid chromatographic method for the quantification of acrolein (1), one of the toxic metabolites of oxazaphosphorine alkylating agents (cyclophosphamide and ifosfamide) was developed. Condensation of acrolein with Luminarin® 3 afforded a fluorescent derivative that could be specifically detected and quantified. Chromatographic conditions involved a C18 RP column Uptisphere and a gradient elution system to optimize resolution and time analysis. The method showed high sensitivity with a limit of detection of 100 pmol/ml and a limit of quantification of 300 pmol/ml. This technique is particularly suitable for pharmacokinetic studies on plasma of oxazaphosphorine-receiving patients.  相似文献   

4.
Eleven diphenylmethane antihistaminic drugs and their analogues were tested for their detection by capillary gas chromatography (GC) with surface ionization detection (SID). The GC—SID response was highest for doxylamine, diphenhydramine and orphenadrine and lowest for terodiline, clemastine and pipethanate. The detection limits for drugs with the highest response were 2–5 pg (ca. 6–20 fmol) on-column (100–250 pg/ml of body fluid). The detection limits with GC—SID were 10–100 times higher than those with GC with nitrogen—phosphorus detection. A detailed procedure for the isolation of the antihistaminics from human whole blood and urine by the use of Sep-Pak C18 cartridges, prior to GC—SID, is also presented. The recoveries of the drugs (50 or 500 pmol), which had been added to 1 ml of body fluids, were>60%. The baselines remained steady as the column temperature was increased and the background was clean, especially for whole blood extracts.  相似文献   

5.
Using a newly developed fluorescent nanoparticle (NP) that gives rise to a high-intensity and stable fluorescent light, a sensitive antibody (Ab) microarray assay system has been developed for specific detection of bioterrorism agents, as exemplified by ricin, cholera toxin (CT), and staphylococcal enterotoxin B (SEB). The Ab microarray uses a sandwich format that consists of capture Abs, analytes (toxins), biotinylated detection Abs, and avidin-conjugated NP. In all three cases, polyclonal Abs (pAbs) displayed superiority over monoclonal antibodies (mAbs) in capturing toxins on microarray slides even when the pAbs and mAbs had similar affinity as determined by enzyme-linked immunosorbent assay (ELISA). The detection system was successfully used to detect toxins spiked in milk, apple cider, and blood samples. We were able to detect ricin at 100 pg/ml in buffer and at 1 ng/ml in spiked apple cider or milk, whereas CT and SEB were detected at 10 pg/ml in buffer and 100 pg/ml in spiked apple cider or milk. High specificities were also demonstrated in the detection of mixed toxin samples with similar sensitivities. The matrix effect of blood samples on the detection of mixed toxins seems to be minimal when the toxin concentration is at or above 100 ng/ml. The current study highlights the significant role of pAb and NP in increasing selectivity and sensitivity of toxin detection in a microarray format.  相似文献   

6.
Summary This study was undertaken to investigate intracoronary production and systemic release of the atrial natriuretic factor (ANF) and cyclic-guanosine monophosphate (c-GMP) during coronary angioplasty (PTCA). three coronary blood samples were collected, through a balloon catheter, from the area distal to the lesion: before balloon inflation, at maximum inflation and 5 min later. Four additional venous samples were collected: before PTCA, and 5 min, 2 h and 24 h after the procedure. Local intracoronary c-GMP production increased from the baseline level of 7.5±0.9 pmol/ml to 11.1±1.3 pmol/ml at maximum balloon inflation (p<0.01) and decreased 5 min later to 9.5 ±1.0 pmol/ml (p=NS). In contrast, intracoronary ANF production failed to show any significant change at any time during the procedure. Peripheral venous ANF levels increased from 79.1±11.1 pmol/ml to 99.9±16.6 pmol/ml 5 min after balloon inflation (p<0.05) and gradually decreased 2 h (91.9±13.6 pmol/ml) and 24 h (85.6±10.4 pmol/ml) after the procedure. Similarly, peripheral venous c-GMP levels increased from 11.3±1.7 pmol/ml before PTCA to 14.9±1.9 pmol/ml 5 min after balloon inflation (p<0.05), and then gradually decreased 2 h (10.8±1.4 pmol/ml) and 24 h (8.2±1.4 pmol/ml) after the procedure (p<0.01 and <0.0001 compared to the peak value, respectively). In conclusion, acute vessel occlusion and distension during balloon inflation stimulates intracoronary c-GMP production without affecting ANF release.  相似文献   

7.
A sensitive reversed phase HPLC method with evaporative light scattering detection (ELSD) was developed for the determination of the hydrophobic surfactant protein B (SP-B) in human bronchoalveolar lavage fluid. Samples were extracted two times with CHCl(3):MeOH:HCl (2:3:0.005N) solution in a ratio of 1:2 by volume. The extract of the lower phase was separated on a C4 butyl silica gel column with an isocratic elution using a mobile phase, consisting of 97% methanol, 2.75% chloroform and 0.25% 0.1 M trifluoroacetic acid (by volume), at a flow rate of 1 ml/min. SP-B was detected by ELSD and quantified by comparison to an external standard. The duration of a run was 7 min, the quantification limit 30 ng and the limit of detection was at about 15 ng of SP-B. This method is suitable for the rapid routine quantification of SP-B in human bronchoalveolar lavage fluid samples.  相似文献   

8.
Tea catechins, (–)-epigallocatechin-3-gallate (EGCg) and (–)-epigallocatechin (EGC), have been reported to suppress oxidation of plasma low density lipoprotein (LDL) in vitro. If dietary catechins can be efficiently incorporated into human blood plasma, anti-atherosclerotic effects in preventing oxidative modification of LDL would be expected. In this study, a newly developed chemiluminescence detection-high pressure liquid chromatography (CL-HPLC) method for measuring plasma catechins was used and the incorporation of EGCg and EGC into human plasma was investigated. Healthy subjects orally ingested 3, 5, or 7 capsules of green tea extract (corresponding to 225, 375, and 525 mg EGCg and 7.5, 12.5, and 17.5 mg EGC, respectively). The plasma EGCg and EGC concentrations before the administration were all below the detection limit (< 2 pmol/ml), but 90 min after, significantly and dose-dependently increased to 657, 4300, and 4410 pmol EGCg/ml, and 35, 144, and 255 pmol EGC/ml, in the subjects who received 3, 5, and 7 capsules, respectively. Both EGCg and EGC levels detected in plasma corresponded to 0.2–2.0% of the ingested amount. Catechin intake had no effect on the basal level of endogenous antioxidants (α-tocopherol, β-carotene, and lycopene) or of lipids in plasma. These results suggested that drinking green tea daily would contribute to maintain plasma catechin levels sufficient to exert antioxidant activity against oxidative modification of lipoproteins in blood circulation systems.  相似文献   

9.
An ion chromatographic method for the simultaneous determination of cyanide and thiocyanate in blood has been developed. After extraction by adding water and methanol to blood, cyanide was derivatized with 2,3-naphthalenedialdehyde and taurine to give a fluorescent product of 1-cyanobenz[f]isoindole. This compound was detected with high sensitivity by fluorometry and the underivatized thiocyanate was detected by ultraviolet absorption. The detection limits were 3.8 pmol ml−1 for cyanide and 86 pmol ml−1 for thiocyanate, and the recoveries from blood were ca. 83% and ca. 100%, respectively. The proposed method was successfully applied to the analysis of both anions in blood from smokers, non-smokers and fire victims.  相似文献   

10.
The leukemia inhibitory factor (LIF), which is a very expensive reagent, can be used to efficiently control the differentiation of human embryonic stem (ES) cells at concentrations >1000 units/ml for 6–7 days. However, in supplement <500 units/ml, most ES cells differentiate within 3–4 days in in vitro cultures. α-Pinene from Pinus densiflora S. and a polysaccharide (MW 25 kDa) from A. gigas Nakai showed promising results as a substitute for LIF in cultivating ES cells. By adding both 0.5 (μg/ml) of α-pinene and the polysaccharide, most of the ES cells could be maintained under undifferentiated conditions after adding only 100 units/ml of LIF. It was found that α-pinene can play a role in preventing the ES cells from differentiating and the polysaccharide can be used to grow the ES cells. The results suggest that human ES cells can be maintained under undifferentiated conditions by supplementing both plant extracts, which can result in a reduction in the amount of LIF needed.  相似文献   

11.
We developed a high-performance liquid chromatography/mass spectrometry (HPLC/MS) method for the identification and quantification of anandamide, an endogenous cannabinoid substance, and other fatty acid ethanolamides (AEs) in biological samples. Using a mobile-phase system of methanol/water and gradient elution, we achieved satisfactory resolution of all major AEs, including anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA). Electrospray-generated quasi-molecular species were used as diagnostic ions and detected by selected ion monitoring (SIM). Synthetic deuterium-labeled AEs were used as internal standards, and quantification was carried out by isotope dilution. A linear correlation (r2 = 0.99) was observed in the calibration curves for standard AEs over the range 0-0.5 nmol. Detection limits between 0.1 and 0.3 pmol per sample and quantification limits between 0.5 and 1.2 pmol per sample were obtained. The method was applied to the quantification of anandamide, PEA, and OEA in plasma prepared from rat blood collected either by cardiac puncture or by decapitation. After cardiac puncture, AE levels were in the low-nanomolar range: anandamide, 3.1 +/- 0.6 pmol/ml; PEA, 9.4 +/- 1.6 pmol/ml; OEA, 9.2 +/- 1.8 pmol/ml (mean +/- SE, n = 9). By contrast, after decapitation AEs were dramatically elevated (anandamide, 144 +/- 13 pmol/ml; PEA, 255 +/- 55 pmol/ml; OEA, 175 +/- 48 pmol/ml). Thus, disruptive procedures of blood collection may result in gross overestimates in the concentrations of circulating AEs.  相似文献   

12.
A rapid, highly sensitive method for the determination of morphine and its metabolites morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and normorphine has been developed using high-performance liquid chromatography–electrospray mass spectrometry, with the deuterated analogues as internal standards. The analytes were extracted automatically using end-capped C2 solid-phase extraction cartridges. Baseline separation of morphine, M3G and M6G was achieved on a LiChrospher 100 RP-18 end-capped analytical column (125×3 mm I.D., 5 μm particle size) with water–acetonitrile–tetrahydrofuran–formic acid (100:1:1:0.1, v/v) as the mobile phase. Morphine and normorphine coeluate and were separated mass spectrometrically. The mass spectrometer was operated in the selected-ion monitoring mode using m/z 272 for normorphine, m/z 286 for morphine, m/z 462 for morphine-6-glucuronide. Due to an interfering peak, M3G was measured by tandem mass spectrometry in the daughter-ion mode. The limits of quantitation achieved with this method were 1.3 pmol/ml for morphine, 1.5 pmol/ml for normorphine, 1.0 pmol/ml for M6G and 5.4 pmol/ml for M3G in serum or cerebrospinal fluid. The limits of quantitation achieved in urine were 10 pmol/ml for morphine, 20 pmol/ml for normorphine and M6G and 50 pmol/ml for M3G using a sample size of 100 μl. The method described was successfully applied to the determination of morphine and its metabolites in human serum, cerebrospinal fluid and urine in pharmacokinetic and drug interaction studies.  相似文献   

13.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

14.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

15.
A monoclonal antibody (MoAb)-based sandwich ELISA was developed for the detection of circulating 28.5 kDa tegumental antigen (28.5 kDa TA) in the sera from mice experimentally infected with Fasciola gigantica. The MoAb was immobilized on a microtiter plate, and the antigen in the serum was captured and detected with biotinylated polyclonal rabbit anti TA antibody. The test could detect 28.5 kDa in the extracts of tegument (TA), whole body (WB) and excretory-secretory (ES) fractions at the concentrations of these crude antigens as low as 600 pg/ml, 16 and 60 ng/ml, respectively. This sandwich ELISA assay could detect the infection from day 1 to 35 post infection and showed that circulating level of 28.5 kDa TA peaked at day 1 post infection. In contrast, the antibody detection by indirect ELISA could only demonstrate the antibody level from 35 days post infection. The reliability of the assay method was evaluated using sera from mice infected with F. gigantica or Schistosoma mansoni, and hamsters infected with Opisthorchis viverrini, as well as healthy mice and hamsters. The sandwich ELISA exhibited a sensitivity and specificity at 94.55% and 100%, respectively, and with a positive predictive value of 100%, a negative predictive value of 97.39%, false positive rate of 0%, false negative rate of 5.50% and an accuracy of 98.2%. Thus, this detection method exhibited high specificity and sensitivity as well as could be used for early diagnosis of fasciolosis by F. gigantica.  相似文献   

16.
Solanesol is the starting material for many high-value biochemicals, including coenzyme Q(10) and Vitamin-K analogues. The aim of the current study was to develop a reliable and fast analytical procedure for the determination of solanesol in tobacco using high-performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD) coupled with microwave-assisted extraction (MAE) as an efficient sample preparation technique. The HPLC conditions were Agilent C18 column using acetonitrile-isopropanol (60:40, v/v) as mobile phase at a flow rate of 1 ml/min. ELSD conditions were optimized at nebulizer-gas flow rate of 1.5 l/min and drift tube temperature of 65 degrees C. The method was validated to achieve the satisfactory precision and recovery, and the calibration range was 0.1-1.5 mg/ml. The developed analytical procedure was successfully applied to determine solanesol content in tobacco samples from different growing regions in China.  相似文献   

17.
The development of a sensitive viroimmunoassay for honey bee cytochrome c and its usage for early detection of caste differentiation is described. Pure honey bee cytochrome c was isolated from workers and used to produce antibodies in rabbits. Bacteriophage T4 was chemically modified by covalent attachment of honey bee cytochrome c using tolylene-2,4-diisocyanate as a cross-linking agent. The immunospecific inactivation of this bacteriophage-cytochrome c conjugate by anti-cytochrome c antibodies can be inhibited by free cytochrome c. In quantitative determinations, 50% inhibition is reproducibly achieved at a concentration of 6 ng/ml (5 pmol/ml) and as little as 0.3 ng/ml (0.25 pmol/ml) could be detected by this system. Cytochrome c concentrations were measured in individual animals and substantial differences corresponding larval stages of worker and queen bees are reported.  相似文献   

18.
For patients suffering from bloodstream infections (BSI) molecular diagnostics from whole blood holds promise to provide fast and adequate treatment. However, this approach is hampered by the need of large blood volumes. Three methods for pathogen DNA isolation from whole blood were compared, i.e. an enzymatic method (MolYsis, 1–5 ml), the novel non-enzymatic procedure (Polaris, 1–5 ml), and a method that does not entail removal of human DNA (Triton-Tris-EDTA EasyMAG, 200 µl). These methods were evaluated by processing blood spiked with 0–1000 CFU/ml of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Downstream detection was performed with real-time PCR assays. Polaris and MolYsis processing followed by real-time PCRs enabled pathogen detection at clinically relevant concentrations of 1–10 CFU/ml blood. By increasing sample volumes, concurrent lower cycle threshold (Ct) values were obtained at clinically relevant pathogen concentrations, demonstrating the benefit of using larger blood volumes. A 100% detection rate at a concentration of 10 CFU/ml for all tested pathogens was obtained with the Polaris enrichment, whereas comparatively lower detection rates were measured for MolYsis (50–67%) and EasyMAG (58–79%). For the samples with a concentration of 1 CFU/ml Polaris resulted in most optimal detection rates of 70–75% (MolYsis 17–50% and TTE-EasyMAG 20–36%). The Polaris method was more reproducible, less labour intensive, and faster (45 minutes (including Qiagen DNA extraction) vs. 2 hours (MolYsis)). In conclusion, Polaris and MolYsis enrichment followed by DNA isolation and real-time PCR enables reliable and sensitive detection of bacteria and fungi from 5 ml blood. With Polaris results are available within 3 hours, showing potential for improved BSI diagnostics.  相似文献   

19.
A sensitive high-performance liquid chromatographic method using 3-bromomethyl-6,7-dimethoxy-1-methyl-2(1H)-quinoxalinone (Br-DMEQ) as a fluorescent labeling reagent is described for the determination of benzoylecgonine (BE) and ecgonine (EC). The Br-DMEQ derivatives of BE and EC were separated on a C18 column and detected at 455 nm with excitation at 370 nm. The detection limits of the proposed method were 18.7 fmol for BE and 12.5 pmol for EC at a signal-to-noise ratio of 3. Relative standard deviations of five replicate measurements were 1.94% (10 pmol) and 2.98% (50 pmol) for BE and 6.3% (250 pmol) and 5.62% (1.25 pmol) for EC. This method was applied to the determination of BE in human urine. BE was extracted from urine by solvent extraction with chloroform—isopropyl alcohol (9:1, v/v) solution. Levels of 2.5 · 10−8 M BE in urine (25 pmol/ml) could be determined.  相似文献   

20.
NASBA荧光分子信标技术定量检测丙型肝炎病毒   总被引:1,自引:0,他引:1  
建立NASBA荧光分子信标探针检测技术,并对国家HCV标准品、人工构建HCVRNA野生株及HCV抗体阳性不同人群进行检测。实验结果:该方法检测HCV的灵敏度为103拷贝ml血清,阴性参比品的符合率为100%;检测的线性范围为103拷贝~109拷贝ml血清;精密性(CV值)小于6%,在HCV抗体阳性人群中HCVRNA的检出率在45%~65%之间。结论:该方法在HCVRNA临床定量检测中具有良好的灵敏度、特异性、重复性与实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号