首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of inositol monophosphatase in Saccharomyces cerevisiae   总被引:2,自引:2,他引:0  
Inositol monophosphatase is a key enzyme in the de novo biosynthesis of inositol and in the phosphoinositide second-messenger signalling pathway. Inhibition of this enzyme is a proposed mechanism for lithium's pharmacological action in bipolar illness (manic depression). Very little is known about how expression of this enzyme is regulated. Because the yeast Saccharomyces cerevisiae has been shown to be an excellent model system in which to understand the regulation of inositol metabolism, we characterized inositol monophosphatase in this yeast. Lithium inhibited monophosphatase activity in vitro . Growth in the presence of inositol resulted in increased expression of the enzyme in vivo , although inositol had no effect on enzyme activity in vitro . The inositol effect was apparent when cells were grown in glucose but not in glycerol/ethanol. Monophosphatase activity was derepressed as cells entered stationary phase. This effect was apparent only during growth in glucose plus inositol. The results demonstrate that S. cerevisiae monophosphatase is inhibited by lithium and regulated by factors affecting phospholipid biosynthesis.  相似文献   

2.
Bipolar affective disorder (manic-depressive illness) is a chronic, severe, debilitating illness affecting 1-2% of the population. The Food and Drug Administration-approved drugs lithium and valproate are not completely effective in the treatment of this disorder, and the mechanisms underlying their therapeutic effects have not been established. We are employing genetic and molecular approaches to identify common targets of lithium and valproate in the yeast Saccharomyces cerevisiae. We show that both drugs affect molecular targets in the inositol metabolic pathway. Lithium and valproate cause a decrease in intracellular myo-inositol mass and an increase in expression of both a structural (INO1) and a regulatory (INO2) gene required for inositol biosynthesis. The opi1 mutant, which exhibits constitutive expression of INO1, is more resistant to inhibition of growth by lithium but not by valproate, suggesting that valproate may inhibit the Ino1p-catalyzed synthesis of inositol 1-phosphate. Consistent with this possibility, growth in valproate leads to decreased synthesis of inositol monophosphate. Thus, both lithium and valproate perturb regulation of the inositol biosynthetic pathway, albeit via different mechanisms. This is the first demonstration of increased expression of genes in the inositol biosynthetic pathway by both lithium and valproate. Because inositol is a key regulator of many cellular processes, the effects of lithium and valproate on inositol synthesis have far-reaching implications for predicting genetic determinants of responsiveness and resistance to these agents.  相似文献   

3.
Nigou J  Dover LG  Besra GS 《Biochemistry》2002,41(13):4392-4398
Phosphatidylinositol is an essential component of mycobacteria, and phosphatidylinositol-based lipids such as phosphatidylinositolmannosides, lipomannan, and lipoarabinomannan are major immunomodulatory components of the Mycobacterium tuberculosis cell wall. Inositol monophosphatase (EC 3.1.3.25) is a crucial enzyme in the biosynthesis of free myo-inositol from inositol-1-phosphate, a key substrate for the phosphatidylinositol synthase in mycobacteria. Analysis of the M. tuberculosis genome suggested the presence of four M. tuberculosis gene products that exhibit an inositol monophosphatase signature. In the present report, we have focused on SuhB, which possesses the highest degree of homology with human inositol monophosphatase. SuhB gene was cloned into an E. coli expression vector to over-produce a His-tagged protein, which was purified and characterized. SuhB required divalent metal ions for functional inositol monophosphatase activity, with Mg(2+) being the strongest activator. Inositol monophosphatase activity catalyzed by SuhB was inhibited by the monovalent cation lithium (IC(50) = 0.9 mM). As anticipated, inositol-1-phosphate was the preferred substrate (K(m) = 0.177 +/- 0.025 mM; k(cat) = 3.6 +/- 0.2 s(-)(1)); however, SuhB was also able to hydrolyze a variety of polyol phosphates such as glucitol-6-phosphate, glycerol-2-phosphate, and 2'-AMP. To provide further insight into the structure-function relationship of SuhB, different mutant proteins were generated (E83D, D104N, D107N, W234L, and D235N). These mutations almost completely abrogated inositol monophosphatase activity, thus underlining the importance of these residues in inositol-1-phosphate dephosphorylation. We also identified L81 as a key residue involved in sensitivity to lithium. The L81A mutation rendered SuhB inositol monophosphatase activity 10-fold more resistant to inhibition by lithium (IC(50) = 10 mM). These studies provide the first steps in the delineation of the biosynthesis of the key metabolite inositol in M. tuberculosis.  相似文献   

4.
5.
Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K(m) of 0.22+/-0.03mM for inositol-1-phosphate and K(m) of 0.45+/-0.05mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC(50) approximately 60mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV).  相似文献   

6.
7.
Yeast lithium-sensitive inositol monophosphatase (IMPase) is encoded by a non-essential gene pair (IMP1 and IMP2). Inhibition of IMPase with either Li(+) or Na(+) or a double null mutation imp1 imp2 causes increased levels of inositol monophosphates and reduced level of inositol 1,4,5-trisphosphate. Overexpression of the IMP2 gene has the opposite effects and these results suggest that IMPase activity is limiting for the inositol cycle. Addition of ammonium to cells starved for this nutrient results in a decrease of inositol monophosphates and an increase of inositol 1,4,5-triphosphate, pointing to simultaneous regulation of both inositol 1,4,5-triphosphate production and IMPase activity.  相似文献   

8.
Inositol monophosphatase is a key enzyme of the inositol phosphate second messenger signaling pathway. It is responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Using oligonucleotide probes based on partial amino acid sequence data for the bovine brain enzyme, several overlapping cDNA clones of 2-3 kilobases in length have been isolated. All contain an open reading frame encoding a 277-amino acid protein. No significant sequence homology was found with any known protein. The open reading frame was inserted into a bacterial expression vector in order to confirm the presumed identity of the protein. The expressed protein reacted with an anti-inositol monophosphatase monoclonal antibody. In addition, the protein was enzymically active and indistinguishable from the bovine brain enzyme with respect to Km values for substrate and Li+ sensitivity of inositol 1-phosphate hydrolysis.  相似文献   

9.
Oligonucleotide microarray technology was used to analyze gene expression profiles after chronic treatment with the mood stabilizing drug valproate at a therapeutically relevant concentration in primary cultured rat cerebral cortical cells. We discovered that valproate regulates expression of 28 genes, including three isoenzymes (M1, A3 and A4) of glutathione S-transferase (GST), an important protective factor against oxidative stress. Because previous studies in our laboratory found that chronic valproate treatment protected cultured neurons against oxidative stress, further experiments on the regulation of GST were performed. Regulation of GST M1, GST A3 and GST A4 was verified using northern blotting hybridization. Chronic valproate treatment increased mRNA levels of M1 and A4, but decreased the A3 mRNA level dose-dependently, indicating further complexities in the regulation of GST by valproate. The level of GST M1 protein and GST activity were also increased by chronic valproate treatment. In addition, chronic treatment with lithium, another commonly prescribed mood stabilizer, also increased levels of GST M1 mRNA and protein. The present findings suggest that regulation of GST M1, and possibly GST A4, may mediate the anti-oxidative effects of valproate treatment, and regulation of GST may be involved in the mood stabilizing effect of valproate and lithium.  相似文献   

10.
G E Gillaspy  J S Keddie  K Oda    W Gruissem 《The Plant cell》1995,7(12):2175-2185
myo-Inositol monophosphatase (IMP) is a soluble, Li(+)-sensitive protein that catalyzes the removal of a phosphate from myo-inositol phosphate substrates. IMP is required for de novo inositol synthesis from glucose 6-phosphate and for breakdown of inositol trisphosphate, a second messenger generated by the phosphatidylinositol signaling pathway. We cloned the IMP gene from tomato (LeIMP) and show that the plant enzyme is encoded by a small gene family. Three different LeIMP cDNAs encode distinct but highly conserved IMP enzymes that are catalytically active in vitro. Similar to the single IMP from animals, the activities of all three LeIMPs are inhibited by low concentrations of LiCl. LeIMP mRNA levels are developmentally regulated in seedlings and fruit and in response to light. Immunoblot analysis detected three proteins of distinct molecular masses (30, 29, and 28 kD) in tomato; these correspond to the predicted molecular masses of the LeIMPs encoded by the genes. Immunoreactive proteins in the same size range are also present in several other plants. Immunolocalization studies indicated that many cell types within seedlings accumulate LeIMP proteins. In particular, cells associated with the vasculature express high levels of LeIMP protein; this may indicate a coordinate regulation between phloem transport and synthesis of inositol. The presence of three distinct enzymes in tomato most likely reflects the complexity of inositol utilization in higher plants.  相似文献   

11.
Studies have shown that the inositol biosynthetic pathway and the enzyme glycogen synthase kinase-3 (GSK-3) are targets of the mood-stabilizing drugs lithium and valproate. However, a relationship between these targets has not been previously described. We hypothesized that GSK-3 may play a role in inositol synthesis, and that loss of GSK-3 may lead to inositol depletion, thus providing a mechanistic link between the two drug targets. Utilizing a yeast Saccharomyces cerevisiae gsk-3Delta quadruple-null mutant, in which all four genes encoding homologues of mammalian GSK-3 are disrupted, we tested the hypothesis that GSK-3 is required for de novo inositol biosynthesis. The gsk-3Delta mutant exhibited multiple features of inositol depletion, including defective growth in inositol-lacking medium, decreased intracellular inositol, increased INO1 and ITR1 expression, and decreased levels of phosphatidylinositol. Treatment of wild-type cells with a highly specific GSK-3 inhibitor led to a significant increase in INO1 expression. Supplementation with inositol alleviated the temperature sensitivity of gsk-3Delta. Activity of myo-inositol-3 phosphate synthase, the rate-limiting enzyme in inositol de novo biosynthesis, was decreased in gsk-3Delta. These results demonstrate for the first time that GSK-3 is required for optimal myo-inositol-3 phosphate synthase activity and de novo inositol biosynthesis, and that loss of GSK-3 activity causes inositol depletion.  相似文献   

12.
13.
The pssB gene of Rhizobium leguminosarum bv. trifolii encodes a protein of 284 amino acids with sequence similarity to eukaryotic inositol monophosphatases. The gene was cloned and overexpressed in Escherichia coli. The purified gene product of pssB showed inositol monophosphatase activity with a Km of 0.23 mM, and a Vmax of 3.27 mumol Pi min-1 (mg protein)-1. Its substrate specificity, Mg+2 requirement, Li+ inhibition, and subunit association (dimerization) were studied and compared to those of other inositol monophosphatases. Western immunoblotting with anti-PssB antibodies showed the presence of PssB in R. leguminosarum bv. trifolii strain TA1 and lack of this protein in the pssB mutant strain Rt12A. The presence of PssB protein in R. leguminosarum bv. trifolii TA1 was correlated with phosphatase activity with myo-inositol 1-phosphate as a substrate. Evidence for a regulatory function of PssB protein in exopolysaccharide (EPS) synthesis is presented. The mutation in pssB caused EPS overproduction, and introduction of pssB into the wild-type TA1 strain reduced EPS synthesis. The changes in the level of EPS production were correlated with a non-nitrogen-fixing phenotype of rhizobia.  相似文献   

14.
Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium tolerance and reduced the intracellular accumulation of lithium. This phenotype was blocked by a null mutation in the cation-extrusion ATPase encoded by the ENA1/PMR2A gene, but it was not affected by inositol supplementation. As overexpression of IMPases increased intracellular free Ca2+, it is suggested that yeast IMPases are limiting for the optimal operation of the inositol cycle of calcium signalling, which modulates the Ena1 cation-extrusion ATPase.  相似文献   

15.
Abstract: Previous studies in our laboratory have demonstrated that exposure of rats to chronic lithium results in a significant reduction in the hippocampus of levels of the protein kinase C (PKC) phosphoprotein substrate MARCKS (myristoylated alanine-rich C kinase substrate), which persists after withdrawal and is not observed following acute administration. In an immortalized hippocampal cell line (HN33), we have determined that phorbol esters rapidly down-regulate PKC activity and lead to a subsequent PKC-dependent reduction in content of MARCKS protein. We now report that chronic exposure of HN33 cells to LiCl (1–10 m M ) produces a dose- and time-dependent down-regulation of MARCKS protein. The lithium-induced reduction in MARCKS is dependent on the concentration of inositol present in the medium and is reversed and prevented in the presence of elevated inositol concentrations. When HN33 cells were exposed to lithium at clinically relevant concentrations (1 m M ) under limiting inositol conditions, activation of muscarinic receptor-coupled phosphoinositide signaling significantly potentiated the lithium-induced down-regulation of MARCKS protein. It has been suggested that a major action of lithium in the brain is linked to its inositol monophosphatase inhibitory activity in receptor-mediated signaling through the inositol trisphosphate/diacylglycerol pathway, resulting in a relative inositol depletion. Our data provide evidence that this initial action of lithium may translate into a PKC-dependent long-term down-regulation of MARCKS protein expression in the hippocampus.  相似文献   

16.
Lithium induces autophagy by inhibiting inositol monophosphatase   总被引:2,自引:0,他引:2       下载免费PDF全文
Macroautophagy is a key pathway for the clearance of aggregate-prone cytosolic proteins. Currently, the only suitable pharmacologic strategy for up-regulating autophagy in mammalian cells is to use rapamycin, which inhibits the mammalian target of rapamycin (mTOR), a negative regulator of autophagy. Here we describe a novel mTOR-independent pathway that regulates autophagy. We show that lithium induces autophagy, and thereby, enhances the clearance of autophagy substrates, like mutant huntingtin and alpha-synucleins. This effect is not mediated by glycogen synthase kinase 3beta inhibition. The autophagy-enhancing properties of lithium were mediated by inhibition of inositol monophosphatase and led to free inositol depletion. This, in turn, decreased myo-inositol-1,4,5-triphosphate (IP3) levels. Our data suggest that the autophagy effect is mediated at the level of (or downstream of) lowered IP3, because it was abrogated by pharmacologic treatments that increased IP3. This novel pharmacologic strategy for autophagy induction is independent of mTOR, and may help treatment of neurodegenerative diseases, like Huntington's disease, where the toxic protein is an autophagy substrate.  相似文献   

17.
Inositol monophosphatase (EC 3.1.3.25) in hyperthermophilic archaea is thought to play a role in the biosynthesis of di-myo-inositol-1,1'-phosphate (DIP), an osmolyte unique to hyperthermophiles. The Methanococcus jannaschii MJ109 gene product, the sequence of which is substantially homologous to that of human inositol monophosphatase, exhibits inositol monophosphatase activity but with substrate specificity that is broader than those of bacterial and eukaryotic inositol monophosphatases (it can also act as a fructose bisphosphatase). To understand its substrate specificity as well as the poor inhibition by Li(+) (a potent inhibitor of the mammalian enzyme), we have crystallized the enzyme and determined its three-dimensional structure. The overall fold, as expected, is similar to that of the mammalian enzyme, but the details suggest a closer relationship to fructose 1,6-bisphosphatases. Three complexes of the MJ0109 protein with substrate and/or product and inhibitory as well as activating metal ions suggest that the phosphatase mechanism is a three-metal ion assisted catalysis which is in variance with that proposed previously for the human inositol monophosphatase.  相似文献   

18.
Bovine inositol monophosphatase (IMP) and several homologous proteins were found to share two sequence motifs with bovine inositol polyphosphate 1-phosphatase (IPP). These motifs may correspond to binding sites within IMP and IPP for inositol phosphates or for lithium, since both substances are bound by these proteins. This suggests that the proteins homologous to IMP, which have diverse biological roles but whose function is not clear, may act by enhancing the synthesis or degradation of phosphorylated compounds.  相似文献   

19.
Lithium inhibits inositol monophosphatase at therapeutically effective concentrations, and it has been hypothesized that depletion of brain inositol levels is an important chemical alteration for lithium's therapeutic efficacy in bipolar disorder. We have employed adult rat cortical slices as a model to investigate the gene regulatory consequences of inositol depletion effected by lithium using cytidine diphosphoryl-diacylglycerol as a functionally relevant biochemical marker to define treatment conditions. Genes coding for the neuropeptide hormone pituitary adenylate cyclase activating polypeptide (PACAP) and the enzyme that processes PACAP's precursor to the mature form, peptidylglycine alpha-amidating monooxygenase, were upregulated by inositol depletion. Previous work has shown that PACAP can increase tyrosine hydroxylase (TH) activity and dopamine release, and we found that the gene for GTP cyclohydrolase, which effectively regulates TH through synthesis of tetrahydrobiopterin, was also upregulated by inositol depletion. We propose that modulation of brain PACAP signaling might represent a new opportunity in the treatment of bipolar disorder.  相似文献   

20.
Regulation of phosphatidate phosphatase (EC 3.1.34) activity was examined in Saccharomyces cerevisiae cells supplemented with phospholipid precursors. Addition of inositol to the growth medium of wild-type cells resulted in a twofold increase in phosphatidate phosphatase activity. The increase in phosphatidate phosphatase activity was not due to soluble effector molecules, and inositol did not have a direct effect on enzyme activity. The phosphatidate phosphatase activity associated with the mitochondrial, microsomal, and cytosolic fractions of the cell was regulated by inositol in the same manner. Cells supplemented with inositol had elevated phospholipid levels and reduced triacylglycerol levels compared with unsupplemented cells. Serine, ethanolamine, and choline did not significantly affect the phosphatidate phosphatase activity of cells grown in the absence or presence of inositol. Enzyme activity was not regulated in inositol biosynthesis regulatory mutants, suggesting that regulation by inositol is coupled to regulation of inositol biosynthesis. Phosphatidate phosphatase activity was pleiotropically expressed in structural gene mutants defective in phospholipid biosynthesis. These results suggested that phosphatidate phosphatase was regulated by inositol at a genetic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号