首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Biomarkers》2013,18(7):587-589
Background: A significant proportion of heart failure (HF) patients have preserved ejection fraction (EF). Considering that inflammation and oxidative stress are involved in HF evolution, we investigated lipoprotein-associated phospholipase A2 (LpPLA2), an enzyme involved in these pathophysiologic processes in relation to EF.

Methods and results: The study included 208 HF patients and 20 healthy controls. HF patients with preserved EF (HFpEF) represented 42.31% of all HF patients. LpPLA2 activity was significantly increased in HF patients when compared with controls and was higher in HFpEF than in HF with reduced EF patients (HFrEF). The incidence of left ventricular hypertrophy was higher in HFpEF than in HFrEF (EF < 50).

Conclusion: Confirming its role as a marker of vascular inflammation, LpPLA2 seems to be a biomarker constantly correlated with HF, regardless of etiology. Elevated plasma values of LpPLA2 in HFpEF are consistent with the exacerbated inflammatory status.  相似文献   

2.
IntroductionThe latest European Society of Cardiology Heart Failure (HF) guidelines define three types of HF according to the ejection fraction (EF): HF with reduced EF (HFrEF) when EF < 40%, HF with mid-range EF (HFmrEF), when EF 40-49%, and HF with preserved EF (HFpEF) when EF  50%. The objective of this study was to analyse the characteristics and results of elderly patients hospitalised with HF according to the new classification using EF.MethodsA prospective study was carried out with 531 HF patients aged ≥ 75 years classified according to EF, and admitted in the geriatric wards of 6 hospitals in Spain. An analysis was performed on the demographic and clinical characteristics, as well as well as the morbidity and mortality at one year of follow-up.ResultsAs regards EF, 17.1% had HFrEF, 10% had HFmrEF, and 72.9% had HFpEF. Patients with HFmrEF were more similar to those with HFrEF in terms of a younger age, predominance of men, and previous admission due to HF. This was also the case with the use of drugs for neurohormonal blockade. Patients with HFrEF (compared to those with HFmrEF and HFpEF), had higher mortality (35.2%, 24.5%, and 25.6%, respectively), more readmissions for HF (17.6%, 15.1%, and 14.5%, respectively), and more events (61.5%, 45.3%, and 52.5%, respectively), although there were no significant differences. There were also no differences observed in the survival analysis between the EF groups and the time-dependent outcome variables.ConclusionsIn elderly patients hospitalised with HF, those classified as HFmrEF did not show any clear differences with respect to those with HFrEF or HFpEF. There were no differences in terms of morbidity and mortality.  相似文献   

3.
目的:探讨射血分数保留的心衰(HFpEF)、射血分数中间范围的心衰(HFmr EF)和射血分数下降的心衰(HFr EF)患者临床特征及左心室重塑的差别。方法:选取2013年2月1日至2016年12月31日在我院心内住院的308名心力衰竭患者作为研究对象,根据入院后首次心脏彩超结果,按左室射血分数(LVEF)将入选的心力衰竭患者分为HFr EF组、HFmr EF组和HFpEF组,回顾性分析所有患者的临床一般资料、化验结果、超声数据和用药情况,对比分析3组患者的临床特征及左心室重塑的差别。结果:HFpEF组为123例(39.9%),HFmr EF组为98例(31.5%),HFr EF组为88例(28.6%);其中HFpEF组女性比例高于HFr EF组(59.4%vs.38.6%,P0.05),高血压和房颤患病率HFpEF组高于HFr EF组(P0.05);HFpEF组左心室重构类型以向心性重塑为主,HFr EF组则以离心性重塑为主;HFmr EF组女性比例及高血压、房颤患病率等临床特征及左心室重塑类型分布则介于HFpEF组与HFr EF之间。结论:HFpEF,HFmr EF与HFr EF组患者临床特点及左心室重塑类型分布显著不同,应对不同左室射血分数的心力衰竭患者采取更有针对性的治疗措施。  相似文献   

4.
In order to explore the proteomic signatures of epicardial adipose tissue (EAT) related to the mechanism of heart failure with reduced and mildly reduced ejection fraction (HFrEF/HFmrEF) and heart failure (HF) with preserved ejection fraction (HFpEF), a comprehensive proteomic analysis of EAT was made in HFrEF/HFmrEF (n = 5) and HFpEF (n = 5) patients with liquid chromatography–tandem mass spectrometry experiments. The selected differential proteins were verified between HFrEF/HFmrEF (n = 20) and HFpEF (n = 40) by ELISA (enzyme-linked immunosorbent assay). A total of 599 EAT proteins were significantly different in expression between HFrEF/HFmrEF and HFpEF. Among the 599 proteins, 58 proteins increased in HFrEF/HFmrEF compared to HFpEF, whereas 541 proteins decreased in HFrEF/HFmrEF. Of these proteins, TGM2 in EAT was down-regulated in HFrEF/HFmrEF patients and was confirmed to decrease in circulating plasma of the HFrEF/HFmrEF group (p = 0.019). Multivariate logistic regression analysis confirmed plasma TGM2 could be an independent predictor of HFrEF/HFmrEF (p = 0.033). Receiver operating curve analysis indicated that the combination of TGM2 and Gensini score improved the diagnostic value of HFrEF/HFmrEF (p = 0.002). In summary, for the first time, we described the proteome in EAT in both HFpEF and HFrEF/HFmrEF and identified a comprehensive dimension of potential targets for the mechanism behind the EF spectrum. Exploring the role of EAT may offer potential targets for preventive intervention of HF.  相似文献   

5.
The chronic inflammatory response plays an important role in adverse cardiac remodelling and the development of heart failure (HF). There is also evidence that in the pathogenesis of several cardiovascular diseases, chronic inflammation is accompanied by antibody and complement deposits in the heart, suggestive of a true autoimmune response. However, the role of antibody‐mediated immune responses in HF progression is less clear. We assessed whether immune cell infiltration and immunoglobulin levels are associated with HF type and disease stage, taking sex differences into account. We found IgG deposits and increased infiltration of immune cells in the affected myocardium of patients with end‐stage HF with reduced ejection fraction (HFrEF, n = 20). Circulating levels of IgG1 and IgG3 were elevated in these patients. Furthermore, the percentage of transitional/regulatory B cells was decreased (from 6.9% to 2.4%) compared with healthy controls (n = 5). Similarly, increased levels of circulating IgG1 and IgG3 were observed in men with left ventricular diastolic dysfunction (LVDD, n = 5), possibly an early stage of HF with preserved EF (HFpEF). In conclusion, IgG deposits and infiltrates of immune cells are present in end‐stage HFrEF. In addition, both LVDD patients and end‐stage HFrEF patients show elevated levels of circulating IgG1 and IgG3, suggesting an antibody‐mediated immune response upon cardiac remodelling, which in the early phase of remodelling appear to differ between men and women. These immunoglobulin subclasses might be used as marker for pre‐stage HF and its progression. Future identification of auto‐antigens might open possibilities for new therapeutic interventions.  相似文献   

6.

Background

Chronic heart failure (CHF) with preserved left ventricular (LV) ejection fraction (HFpEF) is observed in half of all patients with CHF and carries the same poor prognosis as CHF with reduced LV ejection fraction (HFrEF). In contrast to HFrEF, there is no established therapy for HFpEF. Chronic inflammation contributes to cardiac fibrosis, a crucial factor in HFpEF; however, inflammatory mechanisms and mediators involved in the development of HFpEF remain unclear. Therefore, we sought to identify novel inflammatory mediators involved in this process.

Methods and Results

An analysis by multiplex-bead array assay revealed that serum interleukin-16 (IL-16) levels were specifically elevated in patients with HFpEF compared with HFrEF and controls. This was confirmed by enzyme-linked immunosorbent assay in HFpEF patients and controls, and serum IL-16 levels showed a significant association with indices of LV diastolic dysfunction. Serum IL-16 levels were also elevated in a rat model of HFpEF and positively correlated with LV end-diastolic pressure, lung weight and LV myocardial stiffness constant. The cardiac expression of IL-16 was upregulated in the HFpEF rat model. Enhanced cardiac expression of IL-16 in transgenic mice induced cardiac fibrosis and LV myocardial stiffening accompanied by increased macrophage infiltration. Treatment with anti-IL-16 neutralizing antibody ameliorated cardiac fibrosis in the mouse model of angiotensin II-induced hypertension.

Conclusion

Our data indicate that IL-16 is a mediator of LV myocardial fibrosis and stiffening in HFpEF, and that the blockade of IL-16 could be a possible therapeutic option for HFpEF.  相似文献   

7.
BackgroundThis review aims to determine if patients who undergo atrial fibrillation (AF) ablation with heart failure with preserved ejection fraction (HFpEF) do better, or worse or the same compared to patients with heart failure with reduced ejection fraction (HFrEF).MethodsA search of MEDLINE and EMBASE was performed using the search terms: “atrial fibrillation”, “ablation” and terms related to HFpEF and HFrEF in order to identify studies that evaluated one or more of i) AF recurrence, ii) periprocedural complications and iii) adverse outcomes at follow up for patients with HFpEF and HFrEF who underwent AF ablation. Data was extracted from included studies and statistically pooled to evaluate adverse events and AF recurrence.Results5 studies were included in this review and the sample size of the studies ranged from 91 to 521 patients with heart failure. There was no significant difference in the pooled rate for no AF or symptom recurrence after AF ablation comparing patients with HFpEF vs HFrEF (RR 1.07 95%CI 0.86–1.33, p = 0.15). The most common complications were access site complications/haematoma/bleeding which occurred in similar proportion in each group; HFpEF (3.1%) and HFrEF (3.1%). In terms of repeat ablations, two studies were pooled to yield a rate of 78/455 (17.1%) for HFpEF vs 24/279 (8.6%) for HFrEF (p = 0.001.ConclusionsHeart failure patients with preserved or reduced ejection fraction have similar risk of AF or symptom recurrence after AF ablation but two studies suggest that patients with HFpEF are more likely to have repeat ablations.  相似文献   

8.
BackgroundHeart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis.ConclusionsThe metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients.

Clinical Trial Registration

ClinicalTrials.gov NCT02052804  相似文献   

9.
Biomarkers are widely used and studied in heart failure. Most studies have described the utility and performance of biomarkers in sub-studies of randomised clinical trials, where the vast majority of the patients suffered from heart failure with reduced ejection fraction (HFrEF), and not with preserved ejection fraction (HFpEF). As a result, there is a scarcity of data describing the levels, dynamics, clinical and biochemical correlates, and biology of biomarkers in patients suffering from HFpEF, whereas HFpEF is in fact a very frequent clinical entity. This article discusses the value of different biomarkers in HFpEF. We describe various aspects of natriuretic peptide measurements in HFpEF patients, with a focus on diagnosis, prognosis and the risk prediction of developing heart failure. Further, we will discuss several emerging biomarkers such as galectin-3 and suppression of tumorigenicity 2, and recently discovered ones such as growth differentiation factor-15 and syndecan-1.  相似文献   

10.
Heart failure (HF) poses a heavy burden on patients, their families and society. The syndrome of HF comes in two types: with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). The latter is on the increase and predominantly present in women, especially the older ones. There is an urgent need for mortality-reducing drugs in HFpEF, a disease affecting around 5 % of those aged 65 years and over. HFpEF develops in patients with risk factors and comorbidities such as obesity, hypertension, diabetes, COPD, but also preeclampsia. These conditions are likely to drive microvascular disease with involvement of the coronary microvasculature, which may eventually evolve into HFpEF. Currently, the diagnosis of HFPEF relies mainly on echocardiography. There are no biomarkers that can help diagnose female microvascular disease or facilitate the diagnosis of (early stages of) HFpEF. Recently a Dutch consortium was initiated, Queen of Hearts, with support from the Netherlands Heart Foundation, with the aim to discover and validate biomarkers for diastolic dysfunction and HFpEF in women. These biomarkers come from innovative blood-derived sources such as extracellular vesicles and circulating cells. Within the Queen of Hearts consortium, we will pursue female biomarkers that have the potential for further evolution in assays with point of care capabilities. As a spin-off, the consortium will gain knowledge on gender-specific pathology of HFpEF, possibly opening up novel treatment options.  相似文献   

11.
目的:分析和比较射血分数保留的心力衰竭(HFp EF)、射血分数中间值(HFmr EF)及射血分数降低的老年心力衰竭(HFr EF)患者临床特征的差异。方法:选取2017年9月至2018年8月哈尔滨市第一医院收治的老年慢性心力衰竭患者共287例,根据心动超声所测左室舒张末期内径(LVEF)值将其分为3组:HFpEF组175例、HFmr EF组50例和HFr EF组62例。比较各组患者一般情况、心动超声检查结果、血清学指标的差异。结果:(1)与HFr EF组患者比较,HFpEF组患者年龄、性别、吸烟史、体重指数(BMI)、原发冠心病、高血压、2型糖尿病患者比例、房颤发生率及心功能分级构成比均具有统计学差异(P0.05);(2)与HFr EF组相比较,HFpEF组患者的E/A比值,左房内径、肺动脉内径、LVEDD较小,而室间隔厚度较厚(P0.05);(3)与HFr EF组患者相比,HFpEF组血清总胆固醇、甘油三酯较高;血肌酐、血尿素氮、血尿酸、超敏C反应蛋白、N-末端脑钠肽前体水平较低,具有统计学差异(P0.05)。结论:老年HFpEF心力衰竭患者以女性居多,体重指数较大,以向心性肥胖为主,血压水平较高,心功能II级者比例高,有明显的舒张功能不全,易发生房性心律失常,房颤发生率高,主要病因为高血压。  相似文献   

12.
Heart failure with preserved ejection fraction (HFpEF) represents a complex and heterogeneous clinical syndrome, which is increasingly prevalent and associated with poor outcome. In contrast to heart failure with reduced ejection fraction (HFrEF), modern heart failure pharmacotherapy did not improve outcome in HFpEF, which was attributed to incomplete understanding of HFpEF pathophysiology, patient heterogeneity and lack of insight into primary pathophysiological processes. HFpEF patients are frequently elderly females and patients demonstrate a high prevalence of non-cardiac comorbidities, which independently adversely affect myocardial structural and functional remodelling. Furthermore, although diastolic left ventricular dysfunction represents the dominant abnormality in HFpEF, numerous ancillary mechanisms are frequently present, which also negatively impact on cardiovascular reserve. Over the past decade, clinical and translational research has improved insight into HFpEF pathophysiology and the importance of comorbidities and patient heterogeneity. Recently, a new paradigm for HFpEF was proposed, which states that comorbidities drive myocardial dysfunction and remodelling in HFpEF through coronary microvascular inflammation. Regarding the conceptual framework of HFpEF treatment, emphasis may need to shift from a ‘one fits all’ strategy to an individualised approach based on phenotypic patient characterisation and diagnostic and pathophysiological stratification of myocardial disease processes. This review will describe these novel insights from a pathophysiological standpoint.  相似文献   

13.

Background

Quality of life is as important as survival in heart failure (HF) patients. Controversies exist with regards to echocardiographic determinants of exercise capacity in HF, particularly in patients with preserved ejection fraction (HFpEF). The aim of this study was to prospectively examine echocardiographic parameters that correlate and predict functional exercise capacity assessed by 6 min walk test (6-MWT) in patients with HFpEF.

Methods

In 111 HF patients (mean age 63?±?10 years, 47% female), an echo-Doppler study and a 6-MWT were performed in the same day. Patients were divided into two groups based on the 6-MWT distance (Group I: ≤ 300 m and Group II: >300 m).

Results

Group I were older (p?=?0.008), had higher prevalence of diabetes (p?=?0.027), higher baseline heart rate (p?=?0.004), larger left atrium - LA (p?=?0.001), longer LV filling time - FT (p?=?0.019), shorter isovolumic relaxation time (p?=?0.037), shorter pulmonary artery acceleration time - PA acceleration time (p?=?0.006), lower left atrial lateral wall myocardial velocity (a’) (p?=?0.018) and lower septal systolic myocardial velocity (s’) (p?=?0.023), compared with Group II.Patients with HF and reduced EF (HFrEF) had lower hemoglobin (p?=?0.007), higher baseline heart rate (p?=?0.005), higher NT-ProBNP (p?=?0.001), larger LA (p?=?0.004), lower septal s’, e’, a’ waves, and septal mitral annular plane systolic excursion (MAPSE), shorter PA acceleration time (p?<?0.001 for all), lower lateral MAPSE, higher E/A & E/e’, and shorter LVFT (p?=?0.001 for all), lower lateral e’ (p?=?0.009), s’ (p?=?0.006), right ventricular e’ and LA emptying fraction (p?=?0.012 for both), compared with HFpEF patients.In multivariate analysis, only LA diameter [2.676 (1.242–5.766), p?=?0.012], and diabetes [0.274 (0.084–0.898), p?=?0.033] independently predicted poor 6-MWT performance in the group as a whole. In HFrEF, age [1.073 (1.012–1.137), p?=?0.018] and LA diameter [3.685 (1.348–10.071), p?=?0.011], but in HFpEF, lateral s’ [0.295 (0.099–0.882), p?=?0.029], and hemoglobin level [0.497 (0.248–0.998), p?=?0.049] independently predicted poor 6-MWT performance.

Conclusions

In HF patients determinants of exercise capacity differ according to severity of overall LV systolic function, with left atrial enlargement in HFrEF and longitudinal systolic shortening in HFpEF as the the main determinants.
  相似文献   

14.
ABSTRACT: BACKGROUND: The aim of this study was to prospectively examine echocardiographic parameters that correlate and predict functional capacity assessed by 6 min walk test (6-MWT) in patients with heart failure (HF), irrespective of ejection fraction (EF). METHODS: In 147 HF patients (mean age 61 +/- 11 years, 50.3% male), a 6-MWT and an echo-Doppler study were performed in the same day. Global LV dyssynchrony was indirectly assessed by total isovolumic time - t-IVT [in s/min; calculated as: 60 -- (total ejection time + total filling time)], and Tei index (t-IVT/ejection time). Patients were divided into two groups based on the 6-MWT distance (Group I: <=300 m and Group II: >300 m), and also in two groups according to EF (Group A: LVEF >= 45% and Group B: LVEF < 45%). RESULTS: In the cohort of patients as a whole, the 6-MWT correlated with t-IVT (r = -0.49, p < 0.001) and Tei index (r = -0.43, p < 0.001) but not with any of the other clinical or echocardiographic parameters. Group I had lower hemoglobin level (p = 0.02), lower EF (p = 0.003), larger left atrium (p = 0.02), thicker interventricular septum (p = 0.02), lower A wave (p = 0.01) and lateral wall late diastolic myocardial velocity a' (p = 0.047), longer isovolumic relaxation time (r = 0.003) and longer t-IVT (p = 0.03), compared with Group II. In the patients cohort as a whole, only t-IVT ratio [1.257 (1.071-1.476), p = 0.005], LV EF [0.947 (0.903-0.993), p = 0.02], and E/A ratio [0.553 (0.315-0.972), p = 0.04] independently predicted poor 6-MWT performance (<300 m) in multivariate analysis. None of the echocardiographic measurements predicted exercise tolerance in HFpEF. CONCLUSION: In patients with HF, the limited exercise capacity, assessed by 6-MWT, is related mostly to severity of global LV dyssynchrony, more than EF or raised filling pressures. The lack of exercise predictors in HFpEF reflects its multifactorial pathophysiology.  相似文献   

15.
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low‐grade inflammation, as occurs with aging (termed “inflammaging”), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome‐immune signaling axis on the age‐dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age‐dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.  相似文献   

16.
Sedentary aging leads to increased cardiovascular stiffening, which can be ameliorated by sufficient amounts of lifelong exercise training. An even more extreme form of cardiovascular stiffening can be seen in heart failure with preserved ejection fraction (HFpEF), which comprises ~40~50% of elderly patients diagnosed with congestive heart failure. There are two major interrelated hypotheses proposed to explain heart failure in these patients: 1) increased left ventricular (LV) diastolic stiffness and 2) increased arterial stiffening. The beat-to-beat dynamic Starling mechanism, which is impaired with healthy human aging, reflects the interaction between ventricular and arterial stiffness and thus may provide a link between these two mechanisms underlying HFpEF. Spectral transfer function analysis was applied between beat-to-beat changes in LV end-diastolic pressure (LVEDP; estimated from pulmonary artery diastolic pressure with a right heart catheter) and stroke volume (SV) index. The dynamic Starling mechanism (transfer function gain between LVEDP and the SV index) was impaired in HFpEF patients (n = 10) compared with healthy age-matched controls (n = 12) (HFpEF: 0.23 ± 0.10 ml·m?2·mmHg?1 and control: 0.37 ± 0.11 ml·m?2·mmHg?1, means ± SD, P = 0.008). There was also a markedly increased (3-fold) fluctuation of LV filling pressures (power spectral density of LVEDP) in HFpEF patients, which may predispose to pulmonary edema due to intermittent exposure to higher pulmonary capillary pressure (HFpEF: 12.2 ± 10.4 mmHg2 and control: 3.8 ± 2.9 mmHg2, P = 0.014). An impaired dynamic Starling mechanism, even more extreme than that observed with healthy aging, is associated with marked breath-by-breath LVEDP variability and may reflect advanced ventricular and arterial stiffness in HFpEF, possibly contributing to reduced forward output and pulmonary congestion.  相似文献   

17.
Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.  相似文献   

18.
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.  相似文献   

19.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号