首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Bradykinin-related peptides (kinins) are well known to contribute to leukocyte recruitment to inflammatory foci; however, a role of these universal pro-inflammatory mediators in the first step of this process, i.e. the leukocyte adhesion to endothelial cells, is not well understood. In this work we found that bradykinin and des-Arg10-kallidin enhance the adhesion of polymorphonuclear bloods cells (PMN) to fibrinogen and fibronectin. Also, the PMN adherence to endothelial cells of HMEC-1 line strongly increased after stimulation by kinins, particularly des-Arg10-kallidin, or when PMN were co-stimulated with bradykinin and interleukin-1β. These effects were attenuated after PMN treatment with a specific inhibitor of carboxypeptidases, which convert kinins to their des-Arg metabolites. The kinin peptides were also able to change the Mac-1 integrin expression on the PMN surface. These results suggest a regulatory effect of kinins on leukocyte adhesion to endothelial wall, providing new aspects of the leukocyte infiltration into inflamed tissues.  相似文献   

2.
The renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) each encompasses a large number of molecules, with several participating in both systems. The RAS generates a family of bioactive angiotensin peptides with varying biological activities. These include angiotensin-(1-8) (Ang II), angiotensin-(2-8) (Ang III), angiotensin-(3-8) (Ang IV), and angiotensin-(1-7) [Ang-(1-7)]. Ang II and Ang III act on type 1 (AT(1)) and type 2 (AT(2)) angiotensin receptors, whereas, Ang IV and Ang-(1-7) act on their own receptors. The KKS also generates a family of bioactive peptides with varying biological activities. These include hydroxylated and non-hydroxylated bradykinin and kallidin peptides and their carboxypeptidase metabolites des-Arg(9)-bradykinin and des-Arg(10)-kallidin. Whereas bradykinin and kallidin act mainly via the type 2 bradykinin (B(2)) receptor, des-Arg(9)-bradykinin and des-Arg(10)-kallidin act mainly via the type 1 bradykinin (B(1)) receptor. The AT(1) receptor forms heterodimers with the AT(2) and B(2) receptors and there is cross talk between the AT(1) and epidermal growth factor receptors. The B(2) receptor also interacts with angiotensin converting enzyme and nitric oxide synthase. Both angiotensin and kinin peptides are metabolised by many different peptidases that are important determinants of the activities of the RAS and KKS, and several of which participate in both systems.  相似文献   

3.
The effects of recombinant murine interleukin (IL)-1beta on gene expression of murine bradykinin B1 receptor (BDKRB1) in MH-S murine alveolar macrophage cell line were evaluated. BDKRB1 mRNA expression in MH-S cells was increased by IL-1beta (1, 3, and 10 ng/ml) in a time-dependent manner, peaking at 3-4 h by 100-1000 fold. IL-1beta (5 ng/ml, 24h) also induced significant binding to [3H]-des-Arg10-kallidin with a dissociation constant (Kd) of 2.95 nM and a maximal binding density (Bmax) of 670 sites/cell. Des-Arg10-kallidin (10 microM), a BDKRB1 agonist, increased intracellular calcium ion ([Ca2+]i) in IL-1beta (5 ng/ml, 24 h)-exposed cells, an increase not observed in the cells not exposed to IL-1beta. A significant increase of tumor necrosis factor (TNF)-alpha secretion occurred in the IL-1beta (5 ng/ml, 24 h)-exposed cells following addition of des-Arg10-kallidin (the IL-1beta-exposed group: 57. 8 +/- 13.7 vs. the vehicle-exposed group: 16.7 +/- 4.3 pg/ml, p < 0.05 after a 100 nM des-Arg10-kallidin for 8 h), with an optimal effect at 3-100 nM. These data suggest that IL-1beta may up-regulate BDKRB1-mediated functions of alveolar macrophages via an induction of BDKRB1 gene expression.  相似文献   

4.
Kininase I-type carboxypeptidases convert native kinin agonists for B(2) receptors into B(1) receptor agonists by specifically removing the COOH-terminal Arg residue. The membrane localization of carboxypeptidase M (CPM) and carboxypeptidase D (CPD) make them ideally situated to regulate kinin activity. Nitric oxide (NO) release from human lung microvascular endothelial cells (HLMVEC) was measured directly in real time with a porphyrinic microsensor. Bradykinin (1-100 nM) elicited a transient (5 min) peak of generation of NO that was blocked by the B(2) antagonist HOE 140, whereas B(1) agonist des-Arg(10)-kallidin caused a small linear increase in NO over 20 min. Treatment of HLMVEC with 5 ng/ml interleukin-1beta and 200 U/ml interferon-gamma for 16 h upregulated B(1) receptors as shown by an approximately fourfold increase in prolonged (>20 min) output of NO in response to des-Arg(10)-kallidin, which was blocked by the B(1) antagonist des-Arg(10)-Leu(9)-kallidin. B(2) receptor agonists bradykinin or kallidin also generated prolonged NO production in treated HLMVEC, which was significantly reduced by either a B(1) antagonist or carboxypeptidase inhibitor, and completely abolished with a combination of B(1) and B(2) receptor antagonists. Furthermore, CPM and CPD activities were increased about twofold in membrane fractions of HLMVEC treated with interleukin-1beta and interferon-gamma compared with control cells. Immunostaining localized CPD primarily in a perinuclear/Golgi region, whereas CPM was on the cell membrane. These data show that cellular kininase I-type carboxypeptidases can enhance kinin signaling and NO production by converting B(2) agonists to B(1) agonists, especially in inflammatory conditions.  相似文献   

5.
Bovine aortic and cerebral microvascular endothelial cells and cultured segments of canine common carotid artery possess functional receptors for the nonapeptide bradykinin which mediate a rapid increase in the formation of [3H]inositol 1-phosphate, [3H]inositol 1,4-bisphosphate, and [3H]inositol 1,4,5-trisphosphate from cell membranes containing isotopically labeled myo-inositol. Bradykinin stimulated the formation of [3H]inositol phosphates from cells in culture or tissues at threshold concentrations of 0.1 nM and 1 nM, and with a half-maximal effective concentration of 0.6-1.0 nM and 30 nM, respectively. In cultured cells, the formation of [3H]inositol trisphosphate and [3H]inositol bisphosphate preceded the formation of [3H]inositol monophosphate. Similarly, [3H]inositol phosphate formation was not inhibited by addition of calcium channel blockers, a calcium chelator, or an intracellular calcium antagonist. Calcium ionophore A23187 did not promote [3H]inositol phosphate accumulation. The receptor selectivity of the bradykinin response in cultured cells was most compatible with a type-2 mediated response. Kallidin stimulated with the same potency as bradykinin but was more potent than methionyl-lysyl-bradykinin or des-Arg9-bradykinin. The B1 receptor antagonists des-Arg9-[Leu8]-bradykinin and des-Arg10-[Leu9]-kallidin were without effect. The rapidity of the inositol phosphate response as well as the close correspondence between the bradykinin type-2 receptor mediated hydrolysis of polyphosphoinositides and changes in prostacyclin synthesis, vessel dilation, and permeability suggests that breakdown products of inositol lipids serve as second messengers mediating the effects of bradykinin on the vascular endothelium.  相似文献   

6.
Expression of the kinin B1 receptor is up-regulated in chronic inflammatory and fibrotic disorders; however, little is known about its role in fibrogenesis. We examined human embryonic lung fibroblasts that constitutively express the B1 receptor and report that engagement of the B1 receptor by des-Arg(10)-kallidin stabilized connective tissue growth factor (CTGF) mRNA, stimulated an increase in alpha1(I) collagen mRNA, and stimulated type I collagen production. These events were not observed in B2 receptor-activated fibroblasts. In addition, B1 receptor activation by des-Arg(10)-kallidin induced a rise in cytosolic Ca(2+) that is consistent with B1 receptor pharmacology. Our results show that the des-Arg(10)-kallidin-stimulated increase in alpha1(I) collagen mRNA was time- and dose-dependent, with a peak response observed at 20 h with 100 nM des-Arg(10)-kallidin. The increase in CTGF mRNA was also time- and dose-dependent, with a peak response observed at 4 h with 100 nM des-Arg(10)-kallidin. The increase in CTGF mRNA was blocked by the B1 receptor antagonist des-Arg(10),Leu(9)-kallidin. Inhibition of protein synthesis by cycloheximide did not block the des-Arg(10)-kallidin-induced increase in CTGF mRNA. These results suggest that engagement of the kinin B1 receptor contributes to fibrogenesis through increased expression of CTGF.  相似文献   

7.
Ha SN  Hey PJ  Ransom RW  Bock MG  Su DS  Murphy KL  Chang R  Chen TB  Pettibone D  Hess JF 《Biochemistry》2006,45(48):14355-14361
We report the critical residues for the interaction of the kinins with human bradykinin receptor 1 (B1) using site-directed mutagenesis in conjunction with molecular modeling of the binding modes of the kinins in the homology model of the B1 receptor. Mutation of Lys118 in transmembrane (TM) helix 3, Ala270 in TM6, and Leu294 in TM7 causes a significant decrease in the affinity for the peptide agonists des-Arg10kallidin (KD) and des-Arg9BK but not the peptide antagonist des-Arg10Leu9KD. In contrast, mutations in TM2, TM3, TM6, and TM7 cause a significant decrease in the affinity for both the peptide agonists and the antagonist. These data indicate that the B1 bradykinin binding pocket for agonists and antagonists is similar, but the manners in which they interact with the receptor do not completely overlap. Therefore, there is a potential to influence the receptor's ligand selectivity.  相似文献   

8.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

9.
The types of kinins excreted in fresh urine of dogs, rats, and humans were compared. Urinary kinins were separated by reverse-phase (C18) high performance liquid chromatography and quantitated by radioimmunoassay using an antibody directed against the COOH-terminal region of the peptide. Kinins were found in the following proportions: 53 +/- 3% bradykinin, 23 +/- 4% Lys-bradykinin, and 13 +/- 7% des-Arg1-bradykinin in dog urine; 67 +/- 6% bradykinin, 6 +/- 3% Lys-bradykinin, and 10 +/- 3% des-Arg1-bradykinin in rat urine; and 12 +/- 4% bradykinin, 30 +/- 3% Lys-bradykinin, 2 +/- 1% des-Arg1-bradykinin, and 41 +/- 3% unknown kinin in human urine. The unknown kinin was purified from a pool of human urine. Amino acid sequencing revealed a structure similar to Lys-bradykinin except that proline in position 4 was replaced by alanine ([Ala3]Lys-bradykinin). Synthetic and endogenous [Ala3]Lys-bradykinins had similar high performance liquid chromotography elution volumes and both had vasodilator activity and contracted the rat uterus. Human urinary kallikrein incubated with semipurified human low molecular weight kininogen released 76% of the total kinins as Lys-bradykinin, 7% as bradykinin, and 17% as [Ala3]Lys-bradykinin. In contrast, rat urinary kallikrein released 86% bradykinin, 18% Lys-bradykinin, and negligible amounts of [Ala3]Lys-bradykinin. The study revealed the presence of a new kinin, [Ala3]Lys-bradykinin, in human urine and it also proves that the types of kinins generated intrarenally are species-dependent.  相似文献   

10.
It is well established that bradykinin can stimulate mucosal electrolyte transport. However, the receptor type which mediates this effect has not been fully characterized. Recent studies have suggested that bradykinin and related kinins may act at two types of receptors designated as B1 and B2. We have determined the effect of bradykinin on electrolyte secretion across guinea pig ileal mucosa and longitudinal muscle in vitro in the presence and absence of D-Phe7-bradykinin (B2 antagonist) and des-Arg9-(Leu8)-bradykinin (B1 antagonist). The B2 antagonist (less than 100 microM) did not affect resting muscle tension or basal electrolyte transport but at 6-30 microM it caused a parallel rightward shift in the concentration-response curves to bradykinin in the mucosa (Ki = 4 microM) and muscle (Ki = 6 microM). Changes in electrolyte transport and muscle contractility evoked by bethanechol and substance P were not affected by the B2 antagonist (30 microM) in either the muscle or the mucosa. Moreover, changes in electrolyte transport and muscle contractility produced by bradykinin were not altered by the B1 antagonist (30 microM). Finally, the B1 agonist des-Arg9-bradykinin (10 nM-1 microM) was not active in either preparation. These data suggest that under normal conditions, ileal secretion and smooth muscle contractility in the guinea pig are regulated by B2-type bradykinin receptors.  相似文献   

11.
F Marceau  B Tremblay 《Life sciences》1986,39(24):2351-2358
Bradykinin (BK) and its fragment des-Arg9-BK failed to stimulate thymidine incorporation in all but one observed fibroblast cultures derived from human amniotic fluid or rabbit dermis. The rabbit dermis fibroblast line designated R51 acquired the capacity to increase its DNA synthesis in response to kinins after several weeks in culture. It was more sensitive to des-Arg9-BK than to BK and the effect of both peptides was antagonized by the analog Leu8, des-Arg9-BK; these features are shared with certain smooth muscle preparations responsive to kinins such as the rabbit aorta. Recently isolated rabbit dermis or human amniotic fibroblasts could not be made responsive to kinins by pre-incubating them with bacterial lipopolysaccharide. The line R51 released more PGE2 than baseline when stimulated with BK or des-Arg9-BK at low concentrations; it was also doubling faster than recently isolated cells of similar origin.  相似文献   

12.
Transforming growth factor (TGF)-beta and des-Arg(10)-kallidin stimulate the expression of connective tissue growth factor (CTGF), a matrix signaling molecule that is frequently overexpressed in fibrotic disorders. Because the early signal transduction events regulating CTGF expression are unclear, we investigated the role of Ca(2+) homeostasis in CTGF mRNA expression in TGF-beta1- and des-Arg(10)-kallidin-stimulated human lung myofibroblasts. Activation of the kinin B1 receptor with des-Arg(10)-kallidin stimulated a rise in cytosolic Ca(2+) that was extracellular Na(+)-dependent and extracellular Ca(2+)-dependent. The des-Arg(10)-kallidin-stimulated increase of cytosolic Ca(2+) was blocked by KB-R7943, a specific inhibitor of Ca(2+) entry mode operation of the plasma membrane Na(+)/Ca(2+) exchanger. TGF-beta1 similarly stimulated a KB-R7943-sensitive increase of cytosolic Ca(2+) with kinetics distinct from the des-Arg(10)-kallidin-stimulated Ca(2+) response. We also found that KB-R7943 or 2',4'-dichlorobenzamil, an amiloride analog that inhibits the Na(+)/Ca(2+) exchanger activity, blocked the TGF-beta1- and des-Arg(10)-kallidin-stimulated increases of CTGF mRNA. Pretreatment with KB-R7943 also reduced the basal and TGF-beta1-stimulated levels of alpha1(I) collagen and alpha smooth muscle actin mRNAs. These data suggest that, in addition to regulating ion homeostasis, Na(+)/Ca(2+) exchanger acts as a signal transducer regulating CTGF, alpha1(I) collagen, and alpha smooth muscle actin expression. Consistent with a more widespread role for Na(+)/Ca(2+) exchanger in fibrogenesis, we also observed that KB-R7943 likewise blocked TGF-beta1-stimulated levels of CTGF mRNA in human microvascular endothelial and human osteoblast-like cells. We conclude that Ca(2+) entry mode operation of the Na(+)/Ca(2+) exchanger is required for des-Arg(10)-kallidin- and TGF-beta1-stimulated fibrogenesis and participates in the maintenance of the myofibroblast phenotype.  相似文献   

13.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

14.
The binding of polymorphonuclear granulocytes (PMN) to activated vascular endothelium is a crucial step in the recruitment of PMN to an inflammatory site. Studies employing cytokine-activated endothelium in culture have shown that PMN binding involves the CD18 family of leukocyte integrins, but also CD18-independent adhesion mechanism(s) on PMN that have not been defined. We unify here two previously disparate approaches to study cell adhesion events between endothelial cells and leukocytes. We show that antibodies to human LECAM-1, the peripheral lymph node homing receptor that is also expressed on PMN, partially inhibit the adhesion of human PMN not only to HEV in frozen sections of lymph node tissue, but also to cytokine-activated human umbilical vein endothelium in vitro. Inhibition with anti-LECAM-1 antibodies and anti-CD18 antibodies is additive. Furthermore, the anti-LECAM-1 antibodies inhibit the adhesion of CD18-deficient PMN to cytokine activated human endothelial cells. These findings indicate that LECAM-1 and CD18-mediated binding mechanisms are independent, and act coordinately or sequentially to mediate PMN attachment to cytokine activated endothelium.  相似文献   

15.
Three new analogues of bradykinin (BK) have been tested for their agonistic and antagonistic actions on the rabbit jugular vein and the guinea pig ileum (B2 receptors), and six were studied on rabbit aorta strips (B1 receptors). Substitution of Gly4, Phe5, and Phe8 in BK with D-Trp gives analogues with a relative affinity lower than 1.0% as compared with BK. These analogues have no antagonistic properties on the rabbit jugular vein and on guinea pig ileum (B2 receptors). Substitution of Pro7 in des-Arg9-BK by Gly and by D-Ala give compounds that antagonise the effects of kinins on the rabbit aorta strips (B1-receptor system). These new antagonists are fairly potent with a pA2 value of 6.03 to 7.29 and seem competitive because the pA2--pA10 values approximate 0.95. These results suggest that the orientation of Phe8 is critical for the activation of B1 receptors by kinins.  相似文献   

16.
Eicosanoid formation by transcellular routes can amplify the levels and types of lipid mediators within a local milieu. To evaluate the role of adhesion in this process, we assessed the influence of mAb against adhesion molecules on LTC4 generation by PMN-endothelial cell interaction. Transcellular LTC4 generation was initiated by addition of fMLP to coincubations of GM-CSF-primed PMN and TNF-activated endothelial cells cultured from kidney glomeruli. Both PMN-endothelial cell adhesion and transcellular LTC4 generation were inhibited by mAb against leukocyte L-selectin and CD18. These results indicate that cytokine-treated PMN and endothelial cells generate LTC4 via transcellular routes by receptor-triggered mechanisms. They suggest that adhesion promotes transcellular eicosanoid biosynthesis and that adhesion molecules may also be targets for blockade of transcellular biosynthesis of lipid mediators.  相似文献   

17.
In order to develop a sensitive pharmacological preparation which would allow the measurement of the inhibitory effects of kinins and substance P (SP) in vascular smooth muscles, several large arteries of the dog were studied in vitro. The common carotid artery was found to be one of the most sensitive preparations to SP and kinins. When contracted with low concentrations of noradrenaline (between 3.0 x 10(-8) and 3.0 x 10(-7) M), this artery responds to SP (6.5 x 10(-11)-6.5 x 10(-9) M) and bradykinin (BK) (8.1 x 10(-11)-9.1 x 10(-8) M) with relaxations that are proportional to the concentrations of the two peptides. SP and BK appear to exert their relaxant effects through the activation of specific receptors as the exposure of the common carotid artery to concentrations of [Leu8]-angiotensin II, propranolol, methysergide, cimetidine, or atropine sufficient to inhibit the effects of the corresponding agonists do not affect the relaxing effect of SP and BK. [Leu8]-des-Arg9-BK (1.0 x 10(-6) M), indomethacin (2.8 x 10(-5) M), and lioresal (4.7 x 10(-5) M) are also inactive. When the dog common carotid artery is desensitized with high concentrations of SP, BK, eledoisin, and physalaemin a cross-desensitization is observed only between SP and physalaemin. These results support the conclusion that SP and kinins act on different receptors. The order of potency of kinins is the following: BK = [Tyr(Me)8]-BK greater than des-Arg9-BK, suggesting that the receptor for kinins is of the B2 type. The order of potency of peptides related to SP is SP greater than C-terminal 4-11 greater than C-terminal hexapeptide 6-11, similar to that observed in other vascular preparations. The results summarized in this paper indicate that the dog common carotid artery is a preparation sensitive to SP and BK and useful for studying the relaxant effect of these two peptides on vascular smooth muscles.  相似文献   

18.
Kinin B1 receptor (B1R) expression is induced by injury or inflammatory mediators, and its signaling produces both beneficial and deleterious effects. Kinins cleaved from kininogen are agonists of the B2R and must be processed by a carboxypeptidase to generate B1R agonists des-Arg(9)-bradykinin or des-Arg(10)-kallidin. Carboxypeptidase M (CPM) is a membrane protein potentially well suited for this function. Here we show that CPM expression is required to generate a B1R-dependent increase in [Ca(2+)](i) in cells stimulated with B2R agonists kallidin or bradykinin. CPM and the B1R interact on the cell membrane, as shown by co-immunoprecipitation, cross-linking, and fluorescence resonance energy transfer analysis. CPM and B1R are also co-localized in lipid raft/caveolin-enriched membrane fractions, as determined by gradient centrifugation. Treatment of cells co-expressing CPM and B1R with methyl-beta-cyclodextrin to disrupt lipid rafts reduced the B1R-dependent increase in [Ca(2+)](i) in response to B2R agonists, whereas cholesterol treatment enhanced the response. A monoclonal antibody to the C-terminal beta-sheet domain of CPM reduced the B1R response to B2R agonists without inhibiting CPM. Cells expressing a novel fusion protein containing CPM at the N terminus of the B1R also increased [Ca(2+)](i) when stimulated with B2R agonists, but the response was not reduced by methyl-beta-cyclodextrin or CPM antibody. A B1R- and CPM-dependent calcium signal in response to B2R agonist bradykinin was also found in endothelial cells that express both proteins. Thus, a close relationship of B1Rs and CPM on the membrane is required for efficiently generating B1R signals, which play important roles in inflammation.  相似文献   

19.
Thrombin-induced expression of endothelial adhesivity toward neutrophils (PMN) was studied using human umbilical vein endothelial cells (HUVEC). HUVEC were challenged with human alpha-thrombin for varying durations up to 120 min, after which the cells were fixed with 1% paraformaldehyde and 51Cr-labeled human PMN were added to determine PMN adhesion. Endothelial adhesivity increased within 15 min after alpha-thrombin exposure, and the response persisted up to 120 min. Expression of endothelial adhesion proteins, P-selectin (GMP-140, PADGEM, CD62), and intercellular adhesion molecule-1 (ICAM-1; CD54) on the endothelial surface was quantitated by increase in the specific binding of anti-P-selectin mAb G1 and anti-ICAM-1 mAb RR1/1 labeled with 125I. P-selectin expression was maximal at 5-15 min alpha-thrombin exposure and decayed to basal levels within 90 min. In contrast, ICAM-1 activity increased at 30 min and remained elevated for 120 min after alpha-thrombin challenge. The initial endothelial adhesivity was dependent on P-selectin expression since PMN adhesion occurring within the first 30 min after alpha-thrombin challenge was inhibited by mAb G1. The later prolonged PMN adhesion was ICAM-1 dependent since this response was inhibited by mAb RR1/1 and to the same degree by the anti-CD18 mAb IB4. Anti-ELAM-1 mAb BB11 had no effect on adhesion of PMN to the alpha-thrombin-challenged cells. The initial P-selectin expression and PMN adhesion responses were reproduced by the 14-amino peptide (SFLLRNPNDKYEPF) (thrombin-receptor activity peptide; TRP-14) which comprised the NH2 terminus created by thrombin's proteolytic action on its receptors. However, TRP-14-induced PMN adhesion was transient, and TRP-14 did not cause ICAM-1 expression. The ICAM-1-dependent PMN adhesion mediated by alpha-thrombin was protein synthesis independent since ICAM-1 expression and PMN adhesion were not inhibited by cycloheximide pretreatment of HUVEC. Moreover, Northern blot analysis indicated absence of ICAM-1 mRNA signal up to 180 min after alpha-thrombin challenge. In conclusion, thrombin-induced endothelial adhesivity involves early- and late-phase responses. The initial reversible PMN adhesion is mediated by rapid P-selectin expression via TRP-14 generation. Thrombin-induced PMN adhesion is stabilized by a protein synthesis-independent upregulation of the constitutive ICAM-1 activity which enables the interaction of ICAM-1 with the CD18 beta 2 integrin on PMN.  相似文献   

20.
Thrombospondin (TSP), a 450-kDa trimeric glycoprotein secreted by platelets and endothelial cells at sites of tissue injury or inflammation, may play an important role in polymorphonuclear leukocyte (PMN) adherence to blood vessel walls before diapedesis. We have examined the adherence of PMN to TSP and compared it to adherence to other extracellular matrix proteins. PMN adherence to TSP-coated plastic was complete by 60 min with spreading completed by 2 h. The kinetics of adhesion and spreading on TSP were similar to that of vitronectin (VN), laminin (LN), and fibronectin (FN). Activation of PMN with the calcium ionophore A23187 or the chemotactic peptide FMLP increased PMN adherence to LN and FN, but not to TSP or VN, suggesting that PMN activation may differentially regulate expression of TSP and VN receptors as compared to LN and FN receptors. The specificity of PMN adherence to TSP was confirmed by competition with saturating amounts of TSP and inhibition with anti-TSP antibodies. mAb A6.1, which binds to the protease-resistant core of TSP, was the most effective in blocking PMN adherence to TSP. Using TSP proteolytic fragments, we demonstrated that the primary interaction of PMN with TSP was mediated through the 140-kDa COOH-terminal domain. Inasmuch as the 140-kDa fragment of TSP contains an Arg-Gly-Asp sequence similar to the cell recognition site of FN and VN, we determined whether RGDS peptides would inhibit PMN adhesion. RGDS did not significantly inhibit PMN adhesion to TSP, VN, or LN, but reduced PMN adhesion to FN by 50%. To determine if PMN adhesion to TSP was mediated by a beta 2 integrin receptor such as LFA-1, MO-1, or p150,95, we performed adhesion assays using PMN isolated from patients with leukocyte adhesion deficiency that lack beta 2 receptors. Leukocyte adhesion deficiency PMN exhibited normal adherence to TSP. In contrast, adherence to VN, LN, and FN was reduced by 95%. Therefore, adherence to TSP is probably not mediated by a beta 2 integrin receptor. These data contribute to the accumulating evidence that PMN can interact with extracellular matrix proteins through a CD11/CD18-independent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号