首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.  相似文献   

5.
In Alzheimer's disease, neuritic amyloid-beta plaques along with surrounding activated microglia and astrocytes are thought to play an important role in the inflammatory events leading to neurodegeneration. Studies have indicated that amyloid-beta can be directly neurotoxic by activating these glial cells to produce oxygen radicals and proinflammatory cytokines. This report shows that, using primary human monocyte-derived macrophages as model cells for microglia, amyloid-beta(1-42) stimulate these macrophages to the production of superoxide anions and TNF-alpha. In contrast, astrocytes do not produce both inflammatory mediators when stimulated with amyloid-beta(1-42). In cocultures with astrocytes and amyloid-beta(1-42)-stimulated macrophages, decreased levels of both superoxide anion and TNF-alpha were detected. These decreased levels of potential neurotoxins were due to binding of amyloid-beta(1-42) to astrocytes since FACScan analysis demonstrated binding of FITC-labeled amyloid-beta(1-42) to astrocytoma cells and pretreatment of astrocytes with amyloid-beta(1-16) prevented the decrease of superoxide anion in cocultures of human astrocytes and amyloid-beta(1-42)-stimulated macrophages. To elucidate an intracellular pathway involved in TNF-alpha secretion, the activation state of NF-kappaB was investigated in macrophages and astrocytoma cells after amyloid-beta(1-42) treatment. Interestingly, although activation of NF-kappaB could not be detected in amyloid-beta-stimulated macrophages, it was readily detected in astrocytoma cells. These results not only demonstrate that amyloid-beta stimulation of astrocytes and macrophages result in different intracellular pathway activation but also indicate that astrocytes attenuate the immune response of macrophages to amyloid-beta(1-42) by interfering with amyloid-beta(1-42) binding to macrophages.  相似文献   

6.
7.
8.
TLR3 functions as a viral nucleic acid sentinel activated by dsRNA viruses and virus replication intermediates within intracellular vesicles. To explore the spectrum of genes induced in human astrocytes by TLR3, we used a microarray approach and the analog polyriboinosinic polyribocytidylic acid (pIC) as ligand. As expected for TLR activation, pIC induced a wide array of cytokines and chemokines known for their role in inflammatory responses, as well as up-regulation of the receptor itself. The data also showed activation of a broad spectrum of antiviral response genes. To determine whether pIC induced an antiviral state in astrocytes, a pseudotyped HIV viral particle, vesicular stomatitis virus g-env-HIV-1, was used. pIC significantly abrogated HIV-1 replication, whereas IL-1, which also potently activates astrocytes, did not. One of the most highly up-regulated genes on microarray was the protein viperin/cig5. We found that viperin/cig5 expression was dependent on IFN regulatory factor 3 and NF-kappaB signaling, and that repetitive stimulation with pIC, but not IL-1, further increased expression. Viperin induction could also be substantially inhibited by neutralizing Abs to IFN-beta, as could HIV-1 replication. To explore a role for viperin in IFN-beta-mediated inhibition of HIV-1, we used an RNA interference (RNAi) approach. RNAi directed against viperin, but not a scrambled RNAi, significantly inhibited viperin expression, and also significantly reversed pIC-induced inhibition of HIV-1 replication. We conclude that viperin contributes to the antiviral state induced by TLR3 ligation in astrocytes, supporting a role for astrocytes as part of the innate immune response against infection in the CNS.  相似文献   

9.
10.
11.
Astrocytes have been shown to release an interleukin 3 (IL 3)-like factor that induces the expression of 20-alpha-hydroxysteroid-dehydrogenase (20-alpha SDH) in nu/nu spleen cells, and the proliferation of the IL 3-dependent cell line 32DCL. We have investigated whether astrocyte-derived IL 3 supports growth of macrophages and their representatives in the brain, the microglia cells. Evidence for intercellular communication between murine astrocytes and macrophages became already detectable in co-culture experiments: astrocytes activated with endotoxin resulted in an increased growth of peritoneal macrophages on the astrocyte monolayer. Biochemical analysis of supernatants of activated astrocytes revealed that the IL 3-like factor that stimulated 32DCL cells and the expression of 20 alpha SDH also served as a growth factor for cultured peritoneal macrophages. The same results were obtained by using microglia cells isolated from primary brain cell cultures of newborn mice, which are characterized by their positive reaction for macrophage markers such as Mac-1 and nonspecific esterase. If secreted by reactive astrocytes in vivo, the IL 3-like factor may contribute to the accumulation of macrophages and microglia cells detected in brain lesions of patients with multiple sclerosis.  相似文献   

12.
13.
Fas ligand (FasL) is an essential molecule strongly expressed in some immunoprivileged sites, but is expressed at very low levels in normal CNS. In this study, acute experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats with guinea pig myelin basic protein. Intrathecal infusion of recombinant FasL before EAE onset dose dependently suppressed acute EAE and alleviated pathological inflammation in lumbosacral spinal cord. This treatment greatly increased apoptosis in CNS inflammatory cells, but did not inhibit systemic immune response to myelin basic protein. Systemic administration of a similar dose of rFasL was ineffective. In vitro, encephalitogenic T cells were highly sensitive to rFasL-induced cell death, and activated macrophages were also susceptible. In addition, in vitro rFasL treatment potentiated the immunosuppressive property of rat cerebrospinal fluid. We conclude that intrathecal infusion of rFasL eliminated the initial wave of infiltrating T cells and macrophages, and therefore blocked the later recruitment of inflammatory cells into CNS. Although Fas receptor expression was observed on spinal cord neurons, astrocytes, and oligodendrocytes, no damage to these cells or to the myelin structure was detected after rFasL infusion.  相似文献   

14.
15.
16.
17.
Growing evidence indicates that maternal pathophysiological conditions, such as diabetes, influence fetal growth and could program metabolic disease in adulthood. Placental cells, particularly Hofbauer cells (HBCs), which are placental macrophages characterized by an anti-inflammatory profile (M2), can sense the modified maternal environment. The goal of this study was to investigate the direct effect of hyperglycemia on HBCs. We studied, at mRNA and protein levels, some markers of M2 and M1 (pro-inflammatory) macrophages in placentae from control and diabetic patients to assess the balance between pro- and anti-inflammatory macrophages: an imbalance of M2 to M1 macrophages has been observed in humans. We used pregnant rats, receiving a single injection of streptozotocin (STZ), as a model of maternal diabetes. We noticed a M2-to-M1 macrophage unbalance as we observed in human. An in vitro model of isolated rat HBCs was used to identify the direct effects of high glucose. We found that high glucose stimulation activated genes belonging to TLR (Toll-Like Receptor)-dependent inflammatory pathways. Moreover, the HBCs stimulated by high glucose switched their M2 profile towards M1, with increased expression of pro-inflammatory cytokines and markers. We also noticed that the oxidative-stress pathway was activated in response to high glucose driven by Hif-1α. In this study, we demonstrated that diabetes/hyperglycemia affect the anti-inflammatory profile of HBCs, by stimulating these cells to acquire an inflammatory profile leading to adverse consequences for the fetal–placental–maternal axis.  相似文献   

18.
Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the environmental milieu is critical in regulating the permissiveness of astrocytes to HIV infection. We evaluated the mechanism by which IFN-γ relieves restricted HIV replication in astrocytes. We demonstrate that although astrocytes have robust endogenous β-catenin signaling, a pathway that is a potent inhibitor of HIV replication, IFN-γ diminished β-catenin signaling in astrocytes by 40%, as evaluated by both active β-catenin protein expression and β-catenin-mediated T cell factor/lymphoid enhancer reporter (TOPflash) activity. Further, IFN-γ-mediated inhibition of β-catenin signaling was dependent on its ability to induce an antagonist of the β-catenin signaling pathway, Dickkopf-related protein 1, in a STAT 3-dependent manner. Inhibition of STAT3 and Dickkopf-related protein 1 abrogated the ability of IFN-γ to enhance HIV replication in astrocytes. These data demonstrated that IFN-γ induces HIV replication in astrocytes by antagonizing the β-catenin pathway. To our knowledge, this is the first report to point to an intricate cross-talk between IFN-γ signaling and β-catenin signaling that may have biologic and virologic effects on HIV outcome in the CNS, as well as on broader processes where the two pathways interface.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号