首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiversity protection is a key issue for fishery management, but there are large uncertainties about its implementation. Incentives for biodiversity protection are created and shaped by the institutional environment which establishes the rights, rules and responsibilities of human behavior. Making the institutional transition from an orientation of single-species to one of biodiversity is complicated by the history of fisheries management, the current state of fisheries and the structures and procedures of fishery decision making. Significant challenges to institutional design for biodiversity lie in the agencies, decision bodies, regulations, and enforcement within which management is implemented. Failure to address the institutional issues surrounding biodiversity will lead to poor implementation and continued ecological simplification. Without serious and fresh attention to innovative design, the institutional environment of fisheries is likely to be completely inadequate to the task of protecting biodiversity.  相似文献   

2.
Stock enhancement as a fisheries management tool   总被引:1,自引:0,他引:1  
Stock enhancement has been viewed as a positive fisheries management tool for over 100 years. However, decisions to undertake such activities in the past have often been technology-based, i.e., driven by the ability to produce fishes, with most stock enhancement projects having limited or no demonstrated success. The reasons for this have been due to an inability to identify and/or control the underlying reasons why a fishery is under-performing or not meeting management objectives. Further, stock enhancement has often been applied in isolation from other fisheries management tools (e.g., effort control). To address these issues and consider stock enhancement in a broader ecosystem perspective, a new approach for stock enhancement is proposed. The proposed model comprises four major steps; a review of all information about an ecosystem/fishery/stock and the setting of clear management targets; a comparison of all relevant fisheries management tools with the potential to meet the management targets; the instigation of a scientifically based, pilot-scale, stock enhancement program with clear objectives, targets, and evaluations; and a full-scale stock enhancement program if the pilot project meets the objectives. The model uses a flow-chart that highlights a broad range of scientific and other information, and the decisions that need to be made in relation to stock enhancement and fisheries management in general. In this way all steps are transparent and all stakeholders (managers, scientists, extractive and non-extractive users, and the general public) can contribute to the information collection and decision making processes. If stock enhancement is subsequently identified as the most-appropriate tool, then the stepwise progression will provide the best possible chance of a positive outcome for a stock enhancement project, while minimizing risks and costs. In this way, stock enhancement may advance as a science and develop as a useful fisheries management tool in appropriate situations.  相似文献   

3.
Marine fisheries as ecological experiments   总被引:1,自引:0,他引:1  
There are many examples of ecological theory informing fishery management. Yet fisheries also provide tremendous opportunities to test ecological theory through large-scale, repeated, and well-documented perturbations of natural systems. Although treating fisheries as experiments presents several challenges, few comparable tests exist at the ecosystem scale. Experimental manipulations of fish populations in lakes have been widely used to develop and test ecological theory. Controlled manipulation of fish populations in open marine systems is rarely possible, but fisheries data provide a valuable substitute for such manipulations. To highlight the value of marine fisheries data, we review leading ecological theories that have been empirically tested using such data. For example, density dependence has been examined through meta-analysis of spawning stock and recruitment data to show that compensation (higher population growth) occurs commonly when populations are reduced to low levels, while depensation (the Allee effect) is rare. As populations decline, spatial changes typically involve populations contracting into high-density core habitats while abandoning less productive habitats. Fishing down predators may result in trophic cascades, possibly shifting entire ecosystems into alternate stable states, although alternate states can be maintained by both ecological processes and continued fishing pressure. Conversely, depleting low trophic level groups may affect central-place foragers, although these bottom–up effects rarely appear to impact fish—perhaps because many fish populations have been reduced to the point that they are no longer prey limited. Fisheries provide empirical tests for diversity–stability relations: catch data suggest that more diverse systems recover faster and provide more stable returns than less diverse systems. Fisheries have also provided examples of the tragedy of the commons, as well as counter-examples where common property resources have been managed successfully. We also address two barriers to use of fisheries data to answer ecological questions: differences in terminology for similar concepts and misuse of records of fishery landings (catch data) as a proxy for biomass trends.  相似文献   

4.
The assessment of human and ecological risks and associated risk-management decisions are characterized by only partial knowledge of the relevant systems. Typically, large variability and measurement errors in data create challenges for estimating risks and identifying appropriate management strategies. The formal quantitative method of decision analysis can help deal with these challenges because it takes uncertainties into account explicitly and quantitatively. In recent years, research in several areas of natural resource management has demonstrated that decision analysis can identify policies that are appropriate in the presence of uncertainties. More importantly, the resulting optimal decision is often different from the one that would have been chosen had the uncertainties not been taken into account quantitatively. However, challenges still exist to effective implementation of decision analysis.  相似文献   

5.
Looking to the Future of Ecosystem Services   总被引:2,自引:1,他引:1  
Ecosystem services—the benefits that people obtain from ecosystems—are essential to human existence, but demands for services often surpass the capacity of ecosystems to provide them. Lack of ecological information often precludes informed decision making about ecosystem services. The Millennium Ecosystem Assessment (MA) was conceived in part to provide the necessary ecological information to decision makers. To this end, the MA set out to address the stated needs and concerns of decision makers and examine the ecological dynamics and uncertainties underlying these concerns. To improve our understanding of their information needs and concerns, we interviewed 59 decision makers from five continents. The respondents indicated that although most people generally agree about the ideal state of the planet—free of poverty and extreme inequality, replete with cultural and biological diversity—they often disagree about the best way to achieve these goals. Further, although nonspecialists are generally concerned about the environment and may have a good understanding of some of issues, they often have a more limited grasp of the ecological dynamics that drive the issues of concern. We identify some of the principal uncertainties about ecosystem dynamics and feedbacks that underlie the concerns of decision makers. Each of the papers in this special feature addresses these ecological feedbacks from the perspective of a specific discipline, suggesting ways in which knowledge of ecological dynamics can be incorporated into the MA’s assessment and scenario-building process.  相似文献   

6.
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920–2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.  相似文献   

7.
The pelagic fishery in South Africa targets mainly anchovy, Engraulis capensis, and sardine, Sardinops sagax, both of which have varied substantially in abundance during the history of the fishery. Since 1988, there has been progress in this fishery towards the use of management procedures as the basis for determination of management regulations, where a management procedure is defined as a set of rules, derived by simulation and normally implemented for three to five years, specifying how the regulatory mechanism is set, the data collected for this purpose and how these data are to be analysed and used. Advantages of management procedures include formal consideration of uncertainty, the ability to choose decision rules based on their predicted medium-term consequences and a saving in workload compared with annual assessments.This paper discusses the lessons learned in application of management procedures and their precursors in this fishery. The high variability in abundance of the two stocks, the trend in their relative abundance, the substantial uncertainties in information, strong pressure to meet socio-economic goals and the conflicting objectives which arose between the directed anchovy and directed sardine fishery are identified as major problems in implementation of procedures and management of the resources. However, the use of management procedures is considered to have led to greatly improved communication with the industry and to substantial input by them into the management process. The procedures and the simulations upon which they were based also enabled consideration of the major sources of uncertainty in understanding of the resource dynamics and facilitated the development of procedures that were robust to them.It is argued that biological uncertainty greatly exacerbated the problems in application of the procedures but probably cannot be markedly reduced in the near future. Management procedures must be robust to likely variability and uncertainty. Of equal importance are identification and selection of achievable objectives, and allocation to the political decision makers and not to the scientists, of responsibility for determining acceptable trade-offs between conservation and socio-economic goals. Other issues, including the importance of long-term rights and allowance for flexibility in fishing practice, are also highlighted  相似文献   

8.
Adaptive management of coastal ecosystem restoration projects   总被引:1,自引:0,他引:1  
There is a clear need to apply better and more effective management schemes to coastal ecosystem restoration projects. It is very common for aquatic ecosystem restoration projects not to meet their goals. Poor performance has led to a high degree of uncertainty about the potential success of any restoration effort. Under adaptive management, the knowledge gained through monitoring of the project and social policies is translated into restoration policy and program redesign. Planners and managers can utilize the information from the monitoring programs in an effective way to assure that project goals are met or that informed and objective decisions are made to address both ecological and societal needs. The three main ingredients of an effective adaptive management plan in a restoration project are: (1) a clear goal statement; (2) a conceptual model; and (3) a decision framework. The goal ‘drives’ the design of the project and helps guide the development of performance criteria. The goal statement and performance criteria provide the means by which the system can be judged. With the conceptual model, the knowledge base from the field of ecological science plays an active and critical role in designing the project to meet the goal. A system-development matrix provides a simple decision framework to view the alternative states for the system during development, incorporate knowledge gained through the monitoring program, and formulate a decision on actions to take if the system is not meeting its goal.  相似文献   

9.
Great Bear Lake, Northwest Territories, Canada supports important sport and aboriginal-subsistence fisheries and is among the last remaining pristine great lakes of the world. The lake’s unique ecology is characterized by a harsh subarctic climate, low productivity and species diversity, and high intraspecific diversity of lake trout. These aspects in combination with geographical remoteness present special challenges to the management of two exceptionally different fisheries. The history of its management has not been well documented or reviewed; therefore, our objectives in this paper were to summarize the history and status of Great Bear Lake’s fisheries and their management, and to identify gaps in knowledge, future challenges, and actions required to meet those challenges. Prior to 1970, management goals for the lake had not been established formally, and harvest numbers and biological characteristics of fish were unknown. To reduce data gaps, creel surveys, gillnet assessments, fish tagging, and subsistence monitoring were implemented. During the 1980s, Canada established the management goal of conserving a high quality sport fishery, while protecting aboriginal access to the subsistence fishery. On the basis of assessment data, lodge harvest quotas, lodge guest capacity limits, individual angler harvest limits, and angler licensing were among the management actions taken to achieve that goal. Since 2005, decision making has been guided by the “water heart,” a management plan for Great Bear Lake. Management has since evolved into a complex co-management system among aboriginal, territorial, and federal governments. Changes in regulations, sport trophy and tourism industries, subsistence resource use, and social and cultural norms and practices contributed to changes in the Great Bear Lake fishery and its management. In the future, anthropogenic and climate change are the two main challenges facing co-management of the lake’s resources. We recommend the adoption of an ecosystem approach to management, establishment of a fishery technical committee, reformulation of the current plan, explicit commitment to evaluation, conducting community-based monitoring, and development and use of a joint strategic plan among co-managers to describe how to interact and implement the Great Bear Lake management plan.  相似文献   

10.
Focusing on the Baltic archipelago, we address the questions: to what extent are the rhythms of natural and social systems compatible and under which criteria can we make them coincide? Existing mismatches between resource availability and human demand are identified as well as human attempts to dampen ecosystem fluctuations. By means of examples from forestry and fisheries, we illustrate how changes in property rights and technology have altered the diversity and resilience of the archipelago system. Our results suggest that intermediate scale processes of years up to a century are most critical for bringing natural and cultural systems in concordance. The time frame relevant to management and policy in the archipelago seems to correlate with eutrophication processes and the regrowth of forests. In fisheries, a shift from traditional to recreational fisheries has created fishery patterns badly adapted to the dynamics of the coastal ecosystem in disregard of traditional ecological knowledge. A multipurpose and adaptive management of natural resources is advocated as the most appropriate approach for promoting ecological and cultural diversity in the Baltic archipelago. Existing mismatches between the two have to be addressed by governing institutions at many hierarchical levels.  相似文献   

11.
Why are formal statistical methods for risk-based decision-making so seldom used in the practice of watershed management? I contend that complex formal methods, while internally consistent, are often inappropriate to real world decision-making. The primary purpose of risk analysis is to support risk management, and decision methods need to be effective not just in evaluating risk, but also in communicating risk among stakeholders and decision makers. Useful methods must be not only correct, but also readily communicable. Many formal risk-based decision methods have real obstacles to practical application in one of the following areas: (1) many important components of risk that matter to stakeholders are difficult to express in quantitative terms, and any method which turns “fuzzy” information and subjective opinion into hard numbers is prone to be regarded with suspicion; (2) methods which are not understandable and convincing to decision makers have little practical value; (3) a complex formal analysis will be seen as misguided or irrelevant if it does not represent the full spectrum of management goals. This paper compares the process of watershed management with the process of ecological risk assessment, highlighting similarities and key differences. A practical decision method which balances quantitative rigor with ability to communicate to and forge consensus among stakeholders is then outlined with reference to a successful case study.  相似文献   

12.
Two mass-balance trophic models are constructed to describe the Gulf of Thailand ecosystem (10–50 m depth): one model pertains to the initial phase of fisheries development, and the other to when the resources were severely depleted. The two phases are compared, and changes brought about by fishing discussed. A dynamic simulation model, Ecosim, is then used successfully to reproduce the 1980 state of the fishery based on the 1963 model and the development in catches. In addition the 1980 model is used to predict how the ecosystem groups may bounce back following marked reduction in fishing pressure. Finally, the 1963 model is used to study alternative scenarios for how the fisheries development could take place, notably the effect of exploiting only the resources of larger species. The study validates that the Ecosim model can be used to predict ecosystem level changes following changes in fishing pressure, therefore fishing induced changes can to a large extent explain the changes in ecosystem pools and fluxes observed over time.  相似文献   

13.
An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals.  相似文献   

14.
Synergistic Effects of Climate and Fishing in a Marine Ecosystem   总被引:1,自引:0,他引:1  
Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere. Author Contributions  RRK conceived the project and GB analysed the data. RRK, GB and JAL co-wrote the paper.  相似文献   

15.
In response to global habitat loss, many governmental and non‐governmental organizations have implemented land acquisition programs to protect critical habitats permanently for priority species. The ability of these protected areas to meet future management objectives may be compromised if the effects of climate change are not considered in acquisition decisions. Unfortunately, the effects of climate change on ecological systems are complex and plagued by uncertainty, making it difficult for organizations to prioritize research needs to improve decision‐making. Herein, we demonstrate the use of qualitative value of information analysis to identify and prioritize which sources of uncertainty should be reduced to improve land acquisition decisions to protect migratory birds in the face of climate change. The qualitative value of information analysis process involves four steps: (i) articulating alternative hypotheses; (ii) determining the magnitude of uncertainty regarding each hypothesis; (iii) evaluating the relevance of each hypothesis to acquisition decision‐making; and (iv) assessing the feasibility of reducing the uncertainty surrounding each hypothesis through research and monitoring. We demonstrate this approach using the objectives of 3 U.S. federal land acquisition programs that focus on migratory bird management. We used a comprehensive literature review, expert elicitation, and professional judgement to evaluate 11 hypotheses about the effect of climate change on migratory birds. Based on our results, we provide a list of priorities for future research and monitoring to reduce uncertainty and improve land acquisition decisions for the programs considered in our case study. Reducing uncertainty about how climate change will influence the spatial distribution of priority species and biotic homogenization were identified as the highest priorities for future research due to both the value of this information for improving land acquisition decisions and the feasibility of reducing uncertainty through research and monitoring. Research on how changes in precipitation patterns and winter severity will influence migratory bird abundance is also expected to benefit land acquisition decisions. By contrast, hypotheses about phenology and migration distance were identified as low priorities for research. By providing a rigorous and transparent approach to prioritizing research, we demonstrate that qualitative value of information is a valuable tool for prioritizing research and improving management decisions in other complex, high‐uncertainty cases where traditional quantitative value of information analysis is not possible. Given the inherent complexity of ecological systems under climate change, and the difficulty of identifying management‐relevant research priorities, we expect this approach to have wide applications within the field of natural resource management.  相似文献   

16.
Estuaries are globally important to fisheries but face many anthropogenic stressors that reduce water quality and degrade benthic habitat. The Maumee River estuary has been degraded by industrial contaminants, high sediment and nutrient loads, channelization and elimination of surrounding wetlands, lessening its value as spawning habitat for fishes of Lake Erie. Regulation and better management practices (BMPs) in the watershed have improved the water quality in this estuary, which should result in a response of the biotic community. We compared recent (2010/2011) larval fish assemblage data to similar data from the 1970s (1976/1977) in order to identify changes due to improved water and habitat quality. Family‐level diversity was greater in recent study years compared to the 1970s and family richness increased from 6 to 10. In addition, the abundance of lithophilic spawning fishes was significantly greater in the recent study years. Increased diversity and family richness were consistent with increased water quality in the Maumee River whereas the observed increase in abundance of lithophilic spawners was consistent with an increase in the amount or quality of benthic habitat used by species in these families for spawning. Better wastewater management and agricultural practices in coastal watersheds can benefit the early life stages of fishes, thus benefitting coastal fisheries. Furthermore, larval fish assemblages may be useful indicators of biological integrity because of their sensitivities to environmental change. Routine sampling of estuarine larval fish assemblages could provide practitioners with insight into ecosystem changes and measure the response of the biotic community to restoration.  相似文献   

17.
Ecosystems are being altered by rapid and interacting changes in natural processes and anthropogenic threats to biodiversity. Uncertainty in historical, current and future effectiveness of actions hampers decisions about how to mitigate changes to prevent biodiversity loss and species extinctions. Research in resource management, agriculture and health indicates that forecasts predicting the effects of near‐term or seasonal environmental conditions on management greatly improve outcomes. Such forecasts help resolve uncertainties about when and how to operationalize management. We reviewed the scientific literature on environmental management to investigate whether near‐term forecasts are developed to inform biodiversity decisions in Australia, a nation with one of the highest recent extinction rates across the globe. We found that forecasts focused on economic objectives (e.g. fisheries management) predict on significantly shorter timelines and answer a broader range of management questions than forecasts focused on biodiversity conservation. We then evaluated scientific literature on the effectiveness of 484 actions to manage seven major terrestrial threats in Australia, to identify opportunities for near‐term forecasts to inform operational conservation decisions. Depending on the action, between 30% and 80% threat management operations experienced near‐term weather impacts on outcomes before, during or after management. Disease control, species translocation/reintroduction and habitat restoration actions were most frequently impacted, and negative impacts such as increased species mortality and reduced recruitment were more likely than positive impacts. Drought or dry conditions, and rainfall, were the most frequently reported weather impacts, indicating that near‐term forecasts predicting the effects of low or excessive rainfall on management outcomes are likely to have the greatest benefits. Across the world, many regions are, like Australia, becoming warmer and drier, or experiencing more extreme rainfall events. Informing conservation decisions with near‐term and seasonal ecological forecasting will be critical to harness uncertainties and lower the risk of threat management failure under global change.  相似文献   

18.
基于渔获统计的太平洋岛国渔业资源开发利用现状评价   总被引:2,自引:0,他引:2  
丁琪  陈新军  耿婷  黄博 《生态学报》2016,36(8):2295-2303
全面评价渔业资源开发利用状况能够为资源的合理利用提供依据,营养指标作为以生态系统为基础的渔业管理方法与模式在近年来广泛运用于渔业管理中,用于评估捕捞活动的影响。根据联合国粮农组织FAO提供的1950—2010年太平洋岛国的渔获生产统计数据,结合Fishbase提供的相关鱼种营养级(Trophic level,TL)以及Sea Around Us Project数据库提供的无脊椎动物营养级,探讨了1950—2010年澳大利亚、新西兰、基里巴斯和斐济等四国的渔获物平均营养级(Mean trophic level,MTL)的变化情况,以此判定各国海洋渔业资源可持续利用情况。结果表明:澳大利亚资源状况较好,尽管其MTL在1950—1984年以0.09/10a的速度下降,但通过剔除TL低于3.25的物种,从而排除生物量受环境影响而波动较大的植食动物、腐生生物和食浮游生物动物对MTL造成的影响,观察TL大于3.25渔获物平均营养级(~(3.25)Mean trophic level,~(3.25)MTL)的变化情况,其~(3.25)MTL在1950—2010年呈波动上升趋势,说明MTL的下降是由低营养级鱼种产量的增加所引起的。新西兰海洋渔业资源遭到了一定程度的破坏,尽管其MTL自20世纪70年代中期开始大幅上升,并在1990—2010年处于高水平上稳定波动,未出现明显的下降趋势;但在不统计TL低于3.25的物种情况下,其~(3.25)MTL经过1977—1980年的加速上升以及1981—1998年的缓慢上升,在1999—2010年稳定下降并趋于平衡。从基里巴斯和斐济整个海域的营养指标变化情况来看,两国渔业资源状况较好,但将基里巴斯和斐济渔业分为外海渔业和沿岸渔业两类时,伴随产量的持续上升,两国的外海渔业MTL均未出现明显的降低,资源处于加速开发状态;而两国的沿岸渔业MTL在近年来均出现下降,资源被过度捕捞。为促使渔业的可持续发展,各国需加强对资源的动态监测与评估,以掌握捕捞活动下资源的变化情况。  相似文献   

19.
Commitment to conservation-based management of exploited fish species imposes unprecedented requirements for adaptive, real-time management of biologically and socially complex mixed-stock fisheries such as those conducted for Pacific salmon. Stock identification is a key component of the management process, with population-specific timing and abundance information often incorporated into management decisions. By using both microsatellite and major histocompatibility complex genetic variation, we achieved highly accurate estimates of stock composition for Fraser River sockeye salmon. Over a 2-month period in 2002, we analyzed 9300 returning Fraser River sockeye salmon sampled in mixed-stock fisheries, and provided stock composition estimates to fishery managers within 9–30 h of sample delivery. Stock-specific exploitation targets governed by conservation concerns were achieved in this fishery.  相似文献   

20.
Inland fishery ecosystems in Africa are characterized by patterns of overexploitation, environmental degradation and exotic species introductions. Ecological complexity and diversity of aquatic habitats dictate that fishes in general are not evenly distributed in a water body. However, fisheries management regimes tend to ignore this basic principle, assume generalized conditions in a water body, and focus more on ‘desired’ objectives such as maximizing catch. The result is to disregard fish habitat boundaries and anthropogenic influences from the catchment that influence fish production. Overexploitation and environmental degradation disrupt sustainable socioeconomic benefits from the fisheries, create uncertainty among investors, but leave some managers calling for more information with the expectation that the fisheries will recover with time. Open access to the fisheries and full control of fishing effort remain challenges for managers. Exotic species introductions and fish farming can increase production, but such interventions require firm commitment to sound ecological principles and strict enforcement of recommended conservation and co‐management measures in capture fisheries. The general tendency to downplay fishing effort issues, other ecosystem values and functions or rely on temperate fisheries models until a new cycle of overexploitation emerges, characterizes many management patterns in inland fisheries. Aquaculture is not an option to challenges in capture fisheries management. Aquaculture should be developed to increase fish production but even this practice may have negative environmental impacts depending on practice and scale. Decades of information on Lake Victoria fisheries trends and aquaculture development did not stop the collapse of native fisheries. The successfully introduced Nile perch (Lates niloticus) has shown signs of overexploitation and aquaculture has again been considered as the option. By reviewing significant trends associated with Nile perch and its feasibility in aquaculture this paper uses Lake Victoria to illustrate ‘special interest management’ targeting selected species of fish rather than the fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号