首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Allelopathy is defined as the suppression of any aspect of growth and/or development of one plant by another through the release of chemical compounds. Although allelopathic interference has been demonstrated many times using in vitro experiments, few studies have clearly demonstrated allelopathy in natural settings. This difficulty reflects the complexity in examining and demonstrating allelopathic interactions under field conditions. In this paper we address a number of issues related to the complexity of allelopathic interference in higher plants: These are: (i) is a demonstrated pattern or zone of inhibition important in documenting allelopathy? (ii) is it ecologically relevant to explain the allelopathic potential of a species based on a single bioactive chemical? (iii) what is the significance of the various modes of allelochemical release from the plant into the environment? (iv) do soil characteristics clearly influence allelopathic activity? (v) is it necessary to exclude other plant interference mechanisms?, and (vi) how can new achievements in allelopathy research aid in solving problems related to relevant ecological issues encountered in research conducted upon natural systems and agroecosystems? A greater knowledge of plant interactions in ecologically relevant environments, as well as the study of biochemical pathways, will enhance our understanding of the role of allelopathy in agricultural and natural settings. In addition, novel findings related to the relevant enzymes and genes involved in production of putative allelochemicals, allelochemical persistence in the rhizosphere, the molecular target sites of allelochemicals in sensitive plant species and the influence of allelochemicals upon other organisms will likely lead to enhanced utilization of natural products for pest management or as pharmaceuticals and nutraceuticals. This review will address these recent findings, as well as the major challenges which continue to influence the outcomes of allelopathy research.  相似文献   

2.
简述了国内外对生物化感数学建模的研究近况,包括通过数学模型描述化感物质的赫米西斯(Hormesis)现象,化感作用在受体植物不同密度条件下的表达,植物残茬中化感物质的分解动态及受体植物的动态响应,环境中化感物质的动态变化规律及在植物-昆虫-天敌系统中的应用等。并对化感数学建模领域的先驱机理模型An-Hormesis模型,An-Liu-Johnson-Lovett模型,和An_Residue模型做了简介。  相似文献   

3.
【目的】研究入侵植物薇甘菊提取物对土壤氮素矿化的影响及化感利己作用,为薇甘菊通过释放化感物质促进自身生长并排斥本地植物生长提供实验证据,为揭示薇甘菊的入侵机制提供理论依据。【方法】采用经典的化感生测实验、化感物质添加实验以及盆栽控制实验,对比研究薇甘菊及其本地伴生植物水提液和粗提物的化感生测效应、水提液和粗提物添加对土壤氮素的影响以及水提液添加对薇甘菊生长的影响。【结果】与本地伴生种相比,薇甘菊水提液的化感抑制作用较强且促进了土壤硝态氮的生成;而薇甘菊粗提物的化感作用较弱且抑制了土壤铵态氮和硝态氮的生成。水提液盆栽控制实验结果表明,与本地伴生种火炭母相比,薇甘菊水提液具有显著的化感利己作用,这与薇甘菊水提液处理后薇甘菊生长土壤中的蛋白酶活性增强和有效氮含量增加相一致。【结论】薇甘菊可通过水溶性化感物质促进有效氮的生成来实现化感利己作用。  相似文献   

4.
Allelopathy involves the complex chain of chemical communications among plants, including microbes. Laboratory bioassays constitute a significant part of allelopathic research, and various bioassays have been proposed to demonstrate allelopathy under controlled lab conditions. However, many lab bioassays have little or no correspondence to field interaction, which may be due to dissimilarity of the conditions of lab bioassay to natural conditions, lack of standardized techniques, or absence of critical controls. Here we discuss several lab bioassays presently used in allelopathic research for their suitability to demonstrate allelopathy of ecological relevance. We recommend avoiding certain practices, such as grinding plant material to evaluate allelopathic potential and isolation of allelochemicals, using seed germination as the only criterion of growth response, using sand, agar, or autoclaved soil, using organic solvents as extractants in allelopathic bioassays, and eliminating microbial involvement. Care should be taken in the lab to simulate natural conditions and attention should be given to habit, habitat, and life cycle pattern of the allelopathic plants during designing of lab bioassays.  相似文献   

5.
浮游植物的化感作用   总被引:7,自引:0,他引:7  
生物化感作用研究是近年来兴起的交叉学科,是化学生态学研究的重要领域。研究水域浮游植物化感作用对了解浮游植物之间、浮游植物与其他生物之间的相互作用及作用机理具有重要意义,对了解赤潮和水华的发生机制及其生态控制等具有非常重要的作用。综述了海洋和湖泊浮游植物化感作用和化感物质的内涵,讨论了水体浮游植物化感作用的特点、研究化感作用的基本方法、化感物质的种类以及影响化感物质作用的生物和非生物因素,详细介绍了浮游植物化感物质的作用机理以及逃避和拈抗化感作用的方式,同时对目前研究的热点问题及未来研究的方向做了简要概述。  相似文献   

6.
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.  相似文献   

7.
Biological control of weeds by arthropod herbivores is thought to work by reducing the competitive ability of the weed relative to the surrounding vegetation. However, the assumption that herbivory reduces plant competitive ability has not been tested in most biological control systems, and counter to expectation, recent research on the impact of biological control agents on invasive Centaurea species suggests that this genus may respond to herbivory by increased competitive ability through enhanced plant re-growth and/or by inducing increased production of phytotoxic allelochemicals. We examined the impact of two biological control agents of the invasive plant diffuse knapweed (C. diffusa) to see if feeding by either of these insects would enhance the plant’s competitive ability or allelochemical output. Sub-lethal herbivory by either of the biological control agents significantly reduced knapweed performance when the plant was grown in competition with either of two native species. Competition with knapweed significantly reduced the performance of both native species (Artemisia frigida and Bouteloua gracilis), and herbivory by one of the biocontrol agents resulted in a small but significant increase in both native species’ performance. Diffuse knapweed’s putative allelochemical 8-hydroxyquinoline was not detected in experimental or field collected soils from knapweed-infested sites. In contrast to other studies on the impacts of biological control on other Centaurea species, these data support the premise that biological control agents may reduce invading plant competitive ability. We find no evidence for diffuse knapweed allelopathy mediated by 8-hydroxyquinoline or enhanced allelopathy in response to herbivory by biological control agents.  相似文献   

8.
Allelochemicals released by rice roots and residues in soil   总被引:7,自引:0,他引:7  
A few rice (Oryza sativa L.) varieties or rice straw produce and release allelochemicals into soil in which interfere with the growth of neighboring or successive plants. Allelopathic rice PI312777 and Huagan-1 at their early growth stages released momilactone B, 3-isopropyl-5-acetoxycyclohexene-2-one-1, and 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone into soil at phytotoxic levels, but non-allelopathic rice Huajingxian did not. Both allelopathic and non-allelopathic rice residues released momilactone B and lignin-related phenolic acids (p-hydroxybenzoic, p-coumaric, ferulic, syringic and vanillic acids) into the soil during residue decomposition to inhibit successive plants. The results indicated that allelochemicals involved in rice allelopathy from living and dead plants are substantially different. Interestingly, the concentrations of the allelochemicals released from the allelopathic rice seedlings in soil increased dramatically when they were surrounded with Echinochloa crus-galli. The concentrations of the allelochemicals were over 3-fold higher in the presence of E. crus-galli than in the absence of E. crus-galli. However, the same case did not occur in non-allelopathic Huajingxian seedlings surrounded with E. crus-galli. In addition to allelochemical exudation being promoted by the presence of E. crus-galli, allelopathic rice seedlings also increased allelochemical exudation in response to exudates of germinated E. crus-galli seeds or lepidimoide, an uronic acid derivative exuded from E. crus-galli seeds. These results imply that allelopathic rice seedlings can sense certain allelochemicals released by E. crus-galli into the soil, and respond by increased production of allelochemicals inhibitory to E. crus-galli. This study suggests that rice residues of both allelopathic and non-allelopathic varieties release similar concentrations and types of allelochemicals to inhibit successive plants. In contrast, living rice plants of certain allelopathic varieties appear to be able to detect the presence of interspecific neighbors and respond by increased allelochemicals.  相似文献   

9.
李朝婵  钱沉鱼  全文选  唐凤华  欧静 《生态学报》2018,38(13):4909-4916
探明野生杜鹃群落不同层次土壤浸提物的化学成分及其含量差异,为阐明杜鹃群落天然更新障碍与化感作用之间的关系提供基础数据,从化学生态学角度解释群落天然更新障碍的原因。通过种子发芽试验,比较凋落物层(L层)、腐殖质层(H层)和土壤表层(S层)浸提液对自身种子萌发的化感效应,采用内标法结合气相色谱-质谱(GC/MS)联用等技术鉴定土壤浸提液所含的有机化合物。(1)种子发芽试验显示,露珠杜鹃不同土壤层浸提液的化感效应不同。L层的抑制作用最为强烈,其浸提液显著抑制自身种子的萌发。H层和S层对自身具有一定的抑制作用,与对照相比不显著;(2)鉴定了不同层次土壤浸提液中所含的有机化合物,L层、H层和S层均检测出31种组分,其中相对含量大于5%的组分分别有6、8和8种。L层浸提液主要化感成分为丙三醇和棕榈酸,分别达到总量的19.56%和19.17%;H层主要化感成分为2-羟基丙酸和棕榈酸,分别达到总量的14.05%和12.48%;S层土壤浸提物的主要化感成分为棕榈酸和2-羟基乙酸,分别达到总量的14.91%和12.79%。野生露珠杜鹃不同土壤浸提物的化感物质含量以L层最高,L层作为群落土壤化感物质的主要来源;从化感物质组分来分,长链脂肪酸和有机酸类是H层和S层主要的化感物质种类,长链脂肪酸类和醇类是L层主要的化感物质种类。杜鹃群落林下土壤中存在的化感物质可能是其天然更新障碍的重要原因之一。  相似文献   

10.
Allelopathy is defined as mechanism of plant-plant, plant-microorganisms, plant-virus, plant-insect, and plant-soil-plant interactions mediated by plant- or microorganism-produced chemicals released to the environment. The majority of allelochemicals are secondary metabolites and among others belong to terpenoids, phenolic compounds, organic cyanides and longchain fatty acids. The action of allelochemicals in target plant is diverse and affects a large number of biochemical reactions resulting in modifications of different physiological functions. Thus the results of allelochemical action can be detected at different levels of plant organization: molecular, structural, biochemical, physiological and ecological. Enzyme activities, cell division and ultrastructure, membrane permeability, ion uptake and as a consequence plant growth and development are modified by allelochemicals. Significant effects on photosynthesis and respiration are the best-characterized results of allelopathic interactions. Moreover allelopathic compounds seem to induce a secondary oxidative stress expressed as enhanced free radical production and induction of cellular antioxidant system. Plant survival under allelopathy stress conditions depends on plant defense leading to allelochemical detoxication, the process which may go on in parallel to cell defense reaction to oxidative stress. The article presents some aspects of the current knowledge regarding mechanisms of the allelopathy phenomenon. The allelopathy is a complex problem, thus comprehensive understanding of allelochemical mode of action requires further investigation and still remains an open question.  相似文献   

11.
以大白菜、萝卜、番茄和黄瓜种子为受体,采用实验室培养皿种子发芽生物测试法研究了黄瓜种子浸提液、种子萌发、胚根和芽苗分泌物、芽苗腐解物和芽苗浸提液的化感效应。结果表明:(1)黄瓜种子浸提液对大白菜、萝卜、番茄和黄瓜种子萌发均有化感抑制作用,即黄瓜种子内含有某些化感抑制物质。(2)在水浸提过的黄瓜种子萌发过程中,它不仅对其近邻套种的大白菜、萝卜和番茄种子萌发产生化感抑制作用,而且其胚根和芽苗分泌物对后茬播种的4种蔬菜种子发芽也表现出不同程度的化感抑制作用;黄瓜芽苗腐解物和芽苗水浸提液也对各受体蔬菜种子发芽与生长产生不同程度的化感抑制作用,且随着腐解芽苗量的增加或浸提液浓度的升高,各受体蔬菜种子的发芽指标值、化感效应指数值和综合效应值随之降低。(3)黄瓜种子浸提液及芽苗各器官的化感物质对黄瓜种子的萌发与生长产生了自毒作用,且黄瓜芽苗腐解物、芽苗浸提液、胚根及芽苗分泌物对受体黄瓜的自毒作用均为最大。研究发现,黄瓜种子浸提液、种子萌发时期以及芽苗各器官的化感物质主要是通过抑制受体胚根的生长而起化感抑制作用,即受体蔬菜种子胚根对化感效应最为敏感;因黄瓜种子及萌发期释放化感物质的途径有所不同,导致受体大白菜、萝卜、黄瓜和番茄的化感响应也不相同;在黄瓜种子萌发和芽苗生长的早期,化感物质即开始在芽苗体内进行合成与积累,一部分可通过胚根和芽苗分泌途径释放到环境中,另一部分可通过芽苗腐解途径释放化感物质,并对受体蔬菜种子萌发与生长表现出较强的化感抑制作用。  相似文献   

12.
The stressful conditions associated with the Brazilian savanna (Cerrado) environment were supposed to favor higher levels of allelochemicals in Rapanea umbellata from this ecosystem. The allelopathic potential of R. umbellata leaf extracts was studied using the etiolated wheat coleoptile and standard phytotoxicity bioassays. The most active extract was selected to perform a bioassay‐guided isolation, which allowed identifying lutein ( 1 ) and (?)‐catechin ( 2 ) as potential allelochemicals. Finally, the general bioactivity of the two compounds was studied, which indicated that the presence of 1 might be part of the defense mechanisms of this plant.  相似文献   

13.
An ecosystem-level perspective of allelopathy   总被引:9,自引:0,他引:9  
Allelopathy is an interference mechanism by which plants release chemicals which affect other plants; while it has often been proposed as a mechanism for influencing plant populations and communities, its acceptance by plant ecologists has been limited because of methodological problems as well as difficulties of relating the results of bioassays used for testing allelopathy to vegetation patterns in the field. Here we argue that the concept of allelopathy is more appropriately applied at the ecosystem-level, rather than the traditional population/community level of resolution. Firstly, we consider the wide ranging effects of secondary metabolites (widely regarded as allelochemicals) on organisms and processes which regulate ecosystem function, including herbivory, decomposition and nutrient mineralization. It is apparent that plants with allelopathic potential against other organisms induce net changes in ecosystem properties, which may in turn impact upon the plant community in the longer term. We then illustrate these concepts using two contrasting examples of how invasive plant species with allelopathic potential may alter ecosystem properties through the production of secondary metabolites, i.e. Carduus nutans (nodding thistle) in New Zealand pastures and Empetrum hermaphroditum (crowberry) in Swedish boreal forests. In both cases the production of secondary metabolites by the invasive species induces important effects on other organisms and key processes, which help determine how the ecosystem functions and ultimately the structure of the plant community. These examples help demonstrate that the concept of allelopathy is most effectively applied at the ecosystem-level of resolution, rather than at the population-level (i.e. plant-plant interference).  相似文献   

14.
Weeds are known to cause enormous losses due to their interference in agroecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard the phenomenon of allelopathy, which is expressed through the release of chemicals by a plant, has been suggested to be one of the possible alternatives for achieving sustainable weed management. The use of allelopathy for controlling weeds could be either through directly utilizing natural allelopathic interactions, particularly of crop plants, or by using allelochemicals as natural herbicides. In the former case, a number of crop plants with allelopathic potential can be used as cover, smother, and green manure crops for managing weeds by making desired manipulations in the cultural practices and cropping patterns. These can be suitably rotated or intercropped with main crops to manage the target weeds (including parasitic ones) selectively. Even the crop mulch/residues can also give desirable benefits. Not only the terrestrial weeds, even allelopathy can be suitably manipulated for the management of aquatic weeds. The allelochemicals present in the higher plants as well as in the microbes can be directly used for weed management on the pattern of herbicides. Their bioefficacy can be enhanced by structural changes or the synthesis of chemical analogues based on them. Further, in order to enhance the potential of allelopathic crops, several improvements can be made with the use of biotechnology or genomics and proteomics. In this context either the production of allelochemicals can be enhanced or the transgenics with foreign genes encoding for a particular weed-suppressing allelochemical could be produced. In the former, both conventional breeding and molecular genetical techniques are useful. However, with conventional breeding being slow and difficult, more emphasis is laid on the use of modern techniques such as molecular markers and the selection aided by them. Although the progress in this regard is slow, nevertheless some promising results are coming and more are expected in future. This review attempts to discuss all these aspects of allelopathy for the sustainable management of weeds. Referee: Dr. Amrjits S. Basra, Central Plains Crop Technology, 5912 North Meridian Avenue, Wichita, KS 67204  相似文献   

15.
Much research on rice allelopathy has been directed toward the selection of allelopathic rice strains and the identification of allelochemicals in rice. This paper briefly summarizes recent progress in the rice allelopathy and focuses on rediscovery of momilactone B as an allelochemical. A large number of rice varieties were found to inhibit the growth of several plant species when grown together under field and/or laboratory conditions. These findings suggest that rice probably produces and releases allelochemical(s) into the environment. The putative compound causing the inhibitory effect of rice was recently isolated from rice root exudates, and the chemical structure of the inhibitor was determined by spectral data as momilactone B. In addition, it has been found that momilactone B is released from rice roots into the neighboring environment, and the release level of momilactone B from rice may be sufficient to cause growth inhibition of neighboring plants. These findings suggest that momilactone B may play an important role in rice allelopathy.  相似文献   

16.
Plant phenolics in allelopathy   总被引:3,自引:0,他引:3  
Phenolics are one of the many secondary metabolites implicated in allelopathy. To establish that allelopathy functions in a natural ecosystem, the allelopathic bioassay must be ecologically realistic so that responses of appropriate bioassay species are determined at relevant concentrations. It is important to isolate, identify, and characterize phenolic compounds from the soil. However, since it is essentially impossible to simulate exact field conditions, experiments must be designed with conditions resembling those found in natural systems. It is argued that allelopathic potential of phenolics can be appreciated only when we have a good understanding of 1) species responses to phenolic allelochemicals, 2) methods for extraction and isolation of phenolic allelochemicals, and 3) how abiotic and biotic factors affect phenolic toxicity.  相似文献   

17.
Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.  相似文献   

18.
Phytoactivity and allelopathic studies are heavily dependent on germination bioassays of water solutions of allelochemical(s), which necessarily imply that pH and osmotic pressure vary among treatments and between treatments and controls and are therefore a confounding factor in the assessment of seed germination responses to allelochemical(s). When the contribution of pH and osmotic pressure to seed germination responses is considered in experimental designs their effects are almost without exceptions examined separately being assumed, without any evidences, that pH and osmotic pressure act independently on seed germination responses. The objectives of this work were to examine experimentally such assumption using wheat, lettuce, and subterranean clover cultivars to evaluate and model the combined effects on germination of pH and osmotic pressure in the range between 3.0–6.0 and 0–100 mOsmol kg?1, respectively. Empirical equations are fitted, discussed, and the need to consider the simultaneous effects of pH and osmotic pressure firmly established. Finally, the use of the equations fitted and its impact on conclusions is exemplified in a dose-response bioassay of water extracts of Cistus ladanifer on seed germination using subterranean clover as target species where hormesis was found before allelochemical effects were corrected for pH and osmotic pressure values of control and extracts.  相似文献   

19.
化感作用研究中的生物测定方法综述   总被引:145,自引:2,他引:145  
生物测定是化感作用研究的重要环节。目前很多化感作用研究缺乏规范的生物测定方法。本文对国内外的常用的生物测定方法,这些方法的适应性以及影响生物测定结果的一些因素(如化感物质的收集方法、微生物和溶液渗透压、受体的选择等)进行了综述。并对生物测定结果的表示方法提出了建议。  相似文献   

20.
Hypereutrophic waters, which are characterized by nutrient inputs exceeding phytoplankton nutrient requirements, are often sites of chronic nuisance algal blooms and associated water quality deterioration problems. In order to restore such systems to acceptable water quality standards, identification of growth-limiting nutrients is of central importance. Conventional nutrient addition bioassay techniques are often ineffective in identifying potentially limiting nutrients, due to persistent nutrient excesses in hypereutrophic systems. Accordingly, we have developed a nutrient dilution bioassay, in which stepwise dilutions of phytoplankton nutrients (nitrogen, phosphorus, iron, trace metals) with a nutrient-free major ion solution are capable of; 1) identifying those nutrients potentially most limiting, and 2) establishing magnitudes of respective nutrient input cutbacks required to bring about nutrient-limited control of phytoplankton growth. In situ deployment of dilution bioassays should help establish criteria governing minimal nutrient inputs required to arrest undesirable impacts of hypereutrophy. We have evaluated the field applicability of dilution bioassays, during a 2 year trial in the periodically hypereutrophic Neuse River, North Carolina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号