首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Though natural attenuation (NA) is increasingly considered as a remediation technology, the methods for proper identification and quantification of NA are still under discussion. Here the "Virtual Aquifer" approach is used to demonstrate problems which may arise during measurement of concentrations in observation wells and for interpolation of locally measured concentrations in contaminated heterogeneous aquifers. The misinterpretation of measured concentrations complicates the identification and quantification of natural attenuation processes. The "Virtual Aquifer" approach accepts the plume simulated with a numerical model for a heterogeneous aquifer as "virtual reality". This virtual plume is investigated in the model with conventional methods like observations wells. The results of the investigation can be compared to the virtual "reality", evaluating the monitoring method. Locally determined concentrations are interpolated using various interpolation methods and different monitoring set-ups. The interpolation results are compared to the simulated plume to evaluate the quality of interpolation. This evaluation is not possible in nature, since concentrations in a heterogeneous aquifer are never known in detail.  相似文献   

2.
Natural attenuation of benzene and dichloroethanes in groundwater contaminated by leachate from the West KL Avenue landfill in Kalamazoo, Michigan, was evaluated in three phases. Existing data from the previous site investigations were used to locate a series of high-resolution vertical profile samples. By analyzing data from the discrete vertical profile samples, the rates of attenuation of benzene and dichloroethanes in the plume were forecasted. Permanent monitoring wells were installed over the depth intervals associated with high concentrations in the vertical profile sampling. These wells were monitored over time to extract independent estimates of the rates of degradation of benzene and dichloroethanes. Estimates of first-order attenuation rate constants were obtained using two methods: a method due to Buscheck and Alcantar (1995), which is based on a one-dimensional steady-state analytical solution, and the tracer correction method of Wiedemeier et al. (1996). The rates of attenuation predicted from the vertical profile sampling were found to be in good agreement with the rates obtained from the permanent monitoring well data, indicating that the long-term behavior of the contaminant plumes is consistent with the initial forecast. The results also indicated that the natural attenuation of benzene, 1,1-dichloroethane (DCA), and 1,2-DCA was statistically significant (at the 0.05 level).  相似文献   

3.
Extensive trichloroethylene (TCE) groundwater contamination has resulted from discharges to a former seepage basin in the A/M Area at the Department of Energy's Savannah River Site. The direction of groundwater flow has been determined and a seep line where the contaminated groundwater is estimated to emerge as surface water has been identified in a region of the Southern Sector of the A/M Area. This study was undertaken to estimate the potential of four rhizosphere soils along the seep line to naturally attenuate TCE. Microcosms were setup to evaluate both biotic and abiotic attenuation of TCE. Results demonstrated that sorption to soil was the dominant mechanism during the first week of incubation, with as much as 90% of the TCE removed from the aqueous phase. Linear partitioning coefficients (Kd) ranged from 0.83 to 7.4?mL/g, while organic carbon partition coefficients (Koc) ranged from 72 to 180?mL/gC. Diffu-sional losses from the microcosms appeared to be a dominant fate mechanism during the remainder of the experiment, as indicated by results from the water controls. A limited amount of TCE biodegradation was observed, and attempts to stimulate TCE biodegradation by either methanotrophic or methanogenic activity through amendments with methane, oxygen, and methanol were unsuccessful. The appearance of cis-1,2-dichloroethylene (c-DCE), and trans-1,2-dichloroethylene (t-DCE) confirmed the potential for anaerobic reductive dechlorination. However, these daughter products represented less than 5% of the initial TCE added. The sorption results indicate that natural attenuation may represent a viable remediation option for the TCE plume as it passes through the rhizosphere.  相似文献   

4.
Rittmann BE 《Biodegradation》2004,15(6):349-357
Natural attenuation offers large benefits to owners and managers of contaminated sites, but often raises strong objections from those who live and work near a site and are asked to assume most of the long-term risks. Part of the controversy comes about because published definitions of natural attenuation do not identify a realistic end-point objective, and they also are ambiguous about the naturally occurring processes that can achieve the objective. According to guidance from the U.S. National Research Council (NRC 2000), destruction and strong immobilization are the naturally occurring processes that achieve a realistic objective: containing the contaminant relatively nears its source, thereby minimizing exposure risks. The strategy for obtaining solid evidence that the objective is being achieved requires measurements that establish a cause-and-effect relationship between contaminant loss and a destruction or strong-immobilization reaction. The cause-and-effect relationship is best documented with reaction footprints, which typically are concentration changes in reactants or products of the destruction or immobilization reaction. MTBE presents a contemporary example in which footprint evidence for biodegradation is especially crucial, since aerobic biodegradation of MTBE requires special conditions not present at all sites: a high availability of dissolved oxygen and bacteria expressing particular oxygenase enzymes.  相似文献   

5.
Tert-butyl alcohol (TBA) may be present in groundwater as an original component of leaked gasoline, or as a degradation product of methyl tert-butyl ether (MTBE). Evidence for natural attenuation of TBA in groundwater is presented from a chemical plant in Pasadena, Texas. Shallow groundwater in several areas of the plant has been affected by historic leaks and spills of TBA. A decade of regular groundwater monitoring of one groundwater plume, consisting primarily of TBA, shows generally declining concentrations and a plume area that is shrinking. Natural attenuation mechanisms are limiting the advective transport of TBA. The principal mechanism of attenuation in this case is probably biodegradation as the other physical components of natural attenuation (dilution, dispersion, diffusion, adsorption, chemical reactions, and volatilization) cannot explain the behavior of the plume over time. Biodegradation was also indicated by the enrichment of stable carbon isotope composition (13C/12C) of TBA along the flow path. Preliminary dissolved gas and electron acceptor analyses indicate the groundwater is at least under sulfate reducing condition in the core of the plume and the process responsible for biodegradation of TBA may include fermentation under aerobic (plume fringes) and possible anaerobic conditions. This case history demonstrates that natural attenuation of TBA is important, and can be used as a groundwater management tool at this site.  相似文献   

6.
Remediation goals for the source areas of a chlorinated ethene-contaminated groundwater plume were identified by assessing the natural attenuation capacity of the aquifer system. The redox chemistry of the site indicates that sulfate-reducing (H2 ∼ 2 nanomoles [nM]) per liter conditions near the contaminant source grade to Fe(III)-reducing conditions (H2 ∼ 0.5 nM) downgradient of the source. Sulfate-reducing conditions facilitate the initial reduction of perchloroethene (PCE) to trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC). Subsequently, the Fe(III)-reducing conditions drive the oxidation of cis-DCE and VC to carbon dioxide and chloride. This sequence gives the aquifer a substantial capacity for biodegrading chlorinated ethenes. Natural attenuation capacity (the slope of the steady-state contaminant concentration profile along a groundwater flowpath) is a function of biodegradation rates, aquifer dispersive characteristics, and groundwater flow velocity. The natural attenuation capacity at the Kings Bay, Georgia site was assessed by estimating groundwater flowrates (∼0.23±0.12 m/d) and aquifer dispersivity (∼1 m) from hydrologic and scale considerations. Apparent biodegradation rate constants (PCE and TCE ∼0.01 d-1; cis-DCE and VC ∼0.025 d-1) were estimated from observed contaminant concentration changes along aquifer flowpaths. A boundary-value problem approach was used to estimate levels to which contaminant concentrations in the source areas must be lowered (by engineered removal), or groundwater flow velocities lowered (by pumping) for the natural attenuation capacity to achieve maximum concentration limits (MCLs) prior to reaching a predetermined regulatory point of compliance.  相似文献   

7.
Almost all metals present in the environment have been biogeochemically cycled since the formation of the Earth. Human activity has introduced additional processes that have increased the rate of redistribution of metals between environmental compartments, particularly since the industrial revolution. However, over most of the Earth's land surface the primary control on the distribution of metals is the geochemistry of the underlying and local rocks except in all but the worst cases of industrial contamination and some particular geological situations. Fundamental links between chemistry and mineralogy lead to characteristic geochemical signatures for different rock types. As rocks erode and weather to form soils and sediments, chemistry and mineralogy again influence how much metal remains close to the source, how much is translocated greater distances, and how much is transported in solutions that replenish ground and surface water supplies. In addition, direct processes such as the escape of gases and fluids along major fractures in the Earth's crust, and volcanic related activity, locally can provide significant sources of metals to surface environments, including the atmosphere and sea floor. As a result of these processes the Earth's surface is geochemically inhomogeneous. Regional scale processes lead to large areas with enhanced or depressed metal levels that can cause biological effects due to either toxicity or deficiency if the metals are, or are not, transformed to bioavailable chemical species.  相似文献   

8.
Natural attenuation of petroleum hydrocarbons is predictable and self-sustaining because bacteria able to use the contaminants as growth substrates are widely distributed. In contrast, bacteria able to grow at the expense of chlorinated aliphatic compounds are less common and the natural attenuation of such compounds is, therefore, less predictable. The purpose of this paper is to describe examples of other synthetic organic compounds that are known to be biodegradable and have the potential for natural attenuation in the field.  相似文献   

9.
Based on studies of leaking petroleum storage tank (LPST) sites in Texas and California, the average plume of benzene, toluene, ethylene, and xylenes (BTEX) is between 61 and 132 m (200 and 400 ft) long. Standard modeling of BTEX plumes produces plumes well in excess of observed plume lengths. The amount of oxygen carried into the plume zone with clean upgradient water often is insufficient to account for the levels of biodegradation observed in these studies. Traditional recharge of oxygen-containing water into an aquifer adds insufficient oxygen to the system and cannot account for the observed plume lengths. Research has shown that anaerobic processes can contribute to biodegradation in certain cases; however, anaerobic pathways are not included in this work. Reaeration of oxygen-depleted aquifers by diffusive transport of oxygen through the vadose zone has generally been neglected as a way to introduce oxygen into surficial aquifers. The observed plume lengths and preliminary laboratory results indicate that this source of oxygen should be accounted for in any natural attenuation model of BTEX contamination. This approach to modeling reaeration has been incorporated into the finite-element groundwater flow and contaminant transport code, FLOTRAN. Adding diffusion-driven reaeration to the modeling process produces BTEX plumes consistent with observed plume lengths.  相似文献   

10.
Abstract

Soil pollution by heavy metals, particularly lead, is an important environmental concern; the bioavailability of such pollutants is strongly dependent on their chemical form. Here, the speciation of Pb(II) in soil fractions as a function of time shortly after its incorporation is studied, using a selective sequential extraction method. The sample came from an Argentinean Pampas region and was extensively characterised, including Rietveld analysis of the silt+clay fraction XRD pattern to find the major mineral components. Experiments were run twice, once in the winter and once in the summer. The results show different speciation time profiles in both cases, showing faster changes in winter due to the higher water content. The summer experiment corresponds to an earlier stage in the speciation profile evolution compared with winter. The soluble/exchangeable fraction decreases with time in summer but shows a lower and constant value in the winter. A high proportion is found to be adsorbed onto the stable (aluminosilicates+quartz) mineral fraction. The results strongly suggest that, even at a short time following soil pollution with Pb, a high proportion is adsorbed onto the mineral fraction, with only a low fraction being bioavailable. The most stable (mineral incorporated) form is observed to increase with time. Soil water content appears to be more important than temperature in determining the differences between the two.  相似文献   

11.
Detection and quantification of bacteria related to Dehalococcoides is essential for the development of effective remediation strategies for tetrachloroethene (PCE)-contaminated sites. In this study, the authors applied three methods for quantifying Dehalococcoides-like bacteria in a PCE-contaminated aquifer undergoing natural attenuation in Grenchen, Switzerland: a catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) protocol, a competitive nested polymerase chain reaction (PCR) approach, and a direct PCR end point quantification with external standards. For the investigated aquifer, multiple lines of evidence indicated that reductive dechlorination (and likely dehalorespiration) was an active process. Both PCR-based quantification methods indicated that low numbers of mostly sediment-bound Dehalococcoides were present in the contaminated zone of the Grenchen aquifer. Estimates based on the quantitative PCR methods ranged from 2.1 × 107 to 1.5 × 108 sediment-bound Dehalococcoides 16S rRNA gene copies per liter of aquifer volume. In contrast, the liquid phase only contained between 8 and 80 copies per liter aquifer volume. CARD-FISH was not sensitive enough for the quantification of Dehalococcoides cell numbers in this aquifer. Cloning and sequencing of the PCR products revealed the presence of sequences closely related to Dehalococcoides isolates such as D. ethenogenes and Dehalococcoides sp. BAV1. An apparently abundant group (termed “Grenchen Cluster”) of sequences more distantly related to Dehalococcoides was also identified, so far without cultured representatives.  相似文献   

12.
Based on electron acceptor abundance, Fe3+ and SO42- reduction by bacteria may play a dominant role in intrinsic bioremediation of some organic contaminants in the subsurface. Both Fe3+ and SO42- reduction processes involve mineral phases and may not be properly understood by evaluating only groundwater concentrations. Fe and S mineral analyses should be incorporated in natural attenuation studies; however, inherent problems with sample collection and analysis have discouraged such efforts. Methods are presented here for (1) sediment collection and anoxic preservation, (2) evaluation of biologically available Fe3+ and biogenically produced Fe2+ minerals, and (3) a simplified extended mineral sulfide analysis for ∼FeS and S°+FeS2. These techniques are demonstrated to evaluate Fe3+ and SO42- reduction at three sites where the soil or aquifer matrix had been contaminated with gasoline fuel, methane gas, or landfill leachate. It is expected that these techniques will permit Fe and S mineral analyses to become a routine part of natural attenuation assessments.  相似文献   

13.
IN this study the biodegradation and leaching of total petroleum hydrocarbons (TPHs) during the natural attenuation (NA) processes of the oily sludge used for the maintenance of unpaved roads were evaluated. The study was conducted on a road located in Arauca (Colombia) and simultaneously in a laboratory setting where rain conditions were simulated by using columns. In the in situ study, three depths (5, 50, and 80 cm) were assessed. The degradation of TPH was evaluated by monitoring physicochemical and microbiological conditions in situ and in the columns during 538 and 119 days, respectively. The pH levels observed during the study were relatively constant and ranged between the optimum values for biodegradation (6.2 ± 0.9). Water content in situ was low (< 14%) and observed concentrations of nitrogen (as ammonia and nitrate) were < 30 and < 10 mg/kgdw, respectively, indicating that no mass balance was maintained, both possible factors limiting intrinsic biodegradation. During the in situ study a 95% TPH degradation was observed at 5 cm depth, whereas no degradation was evident at 50 and 80 cm. In the column experiments, TPH concentration in the leachate was < 1 mg/L, indicating that the leaching process did not play a key role in this study.  相似文献   

14.
15.
The behavior of Pb in the A and B horizons of an Alfisol from Michigan and an Ultisol from Virginia was studied to determine the effects of “shock”; loading. Combined sequential extraction‐sorption isotherm analysis (CSSA), a relatively new and little tested method, was used in the study. After spiking to simulate severe contamination (~3000 to 60,000 mg/kg), CSSA revealed unexpectedly high levels of exchangeable Pb in the A horizon of the Alfisol and in both horizons of the Ultisol, and showed that the sorption capacities of the phases commonly responsible for fixation of Pb at low to moderate levels of contamination were exceeded. Carbonate sorbed the bulk of the Pb in the Alfisol B horizon and has a high sorption capacity in both soils, despite the presence of other phases with a strong affinity for Pb. Thus, when shock loading occurs (e.g., at a shooting range or dump sites), the highly contaminated A horizons of both soils are expected to pose a serious toxic hazard to humans, and groundwater contamination is possible in association with the Ultisol. CSSA proved useful for determining the sorption capacities of the individual phases while together in a natural soil system and therefore is a valuable method for predicting the attenuation capabilities of soils.  相似文献   

16.
This paper provides the details of the Coupled Biological and Chemical (CBC) model for representing in situ bioremediation of BTEX. The CBC model contains novel features that allow it to comprehensively track the footprints of BTEX bioremediation, even when the fate of those footprints is confounded by abiotic reactions and complex interactions among different kinds of microorganisms. To achieve this comprehensive tracking of all the footprints, the CBC model contains important new biological features and key abiotic reactions. The biological module of the CBC-model includes these important new aspects: (1) it separates BTEX fermentation from methanogenesis, (2) it explicitly includes biomass as a sink for electrons and carbon, (3) it has different growth rates for each biomass type, and (4) it includes inhibition of the different reactions by other electron acceptors and by sulfide toxicants. The chemical module of the CBC-model includes abiotic reactions that affect the footprints of the biological reactions. In particular, the chemical module describes the precipitation/dissolution of CaCO3, Fe2O3, FeS, FeS2, and S degrees. The kinetics for the precipitation/dissolution reactions follow the critical review in Maurer & Rittmann (2004).  相似文献   

17.
A sequential extraction scheme was combined with sorption isotherm analysis in order to investigate sorption of sewage sludge-derived Cu and Zn to the A-horizon of a humic-gley soil as a whole, and to the operationally defined exchangeable (1?M MgCl2), carbonate (1?M NaOAc), Fe/Mn oxide (0.04?M NH2OH.HCl), and organic (0.02?M HNO3+30% H2O2) soil fractions. Sorption parameters were compared for a sample of sludge leachate (with 97.4% of Cu and 63.2% of Zn present as dissolved metal-organic matter complexes, as calculated by geochemical modeling involving MINTEQA2 and verified using an ion exchange resin method) with that of a reference solution exhibiting the same chemical characteristics as the leachate, except for the presence of dissolved organic material. Dissolved metal-organic matter complexes were found to significantly (P<0.05) depress sorption to the bulk soil and each fraction. The greatest depression of Cu and Zn sorption was observed for the exchangeable, carbonate, and Fe/Mn oxide fractions, while the organic fraction of the soil was the least affected. This reflects a greater affinity for the exchangeable, carbonate, and Fe/Mn oxide fractions by the free divalent metal (Cu2+, Zn2+), with sorption by these fractions attributed to cation exchange, chemisorption, and co-precipitation processes. The sorption characteristics of the organic fraction indicated that Cu and Zn sorption by soil organic matter mostly involved dissolved metal-organic matter complexes. This may be attributed to hydrophobic interactions between nonpolar regions of the dissolved metal-organic matter complexes and solid-phase soil organic matter.  相似文献   

18.
A field and laboratory investigation of natural attenuation, focusing on anaerobic biodegradation, was conducted in a forested wetland where a plume of trichloroethene discharges from a sand aquifer through organic-rich wetland and stream-bottom sediments. The rapid response of the wetland hydrology to precipitation events altered groundwater flow and geochemistry during wet conditions in the spring compared to the drier conditions in the summer and fall. During dry conditions, partial reductive dechlorination of trichloroethene to cis-1,2-dichloroethene occurred in methanogenic wetland porewater. Influx of oxygenated recharge during wet conditions resulted in a change from methanogenic to iron-reducing conditions and a lack of 1,2-dichloroethene production in the wet spring conditions. During these wet conditions, dilution was the primary attenuation mechanism evident for trichloroethene in the wetland porewater. Trichloroethene degradation was insignificant in anaerobic microcosms constructed with the shallow wetland sediment, and microbiological analyses showed a low microbial biomass and absence of known dehalorespiring microorganisms. Despite the typically organic-rich characteristic of wetland sediments, natural attenuation by anaerobic degradation may not be an effective groundwater remediation for chlorinated solvents at all sites.  相似文献   

19.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

20.
Trace metals in aquatic and soil systems exist in a number of different soluble and particulate forms that impact the effect of the metals on these ecosystems. Appropriate methods of sampling and analysis are required to accurately determine the low concentrations present. Although assessment of metals in many regulatory programs is based on data for total metal concentrations, such values rarely correlate with effects. Consequently, other means are needed for the prediction of risk. Bioavailability of metals depends on their speciation, whose importance was first established for copper in aquatic systems where the toxicity of metals is related to the activity of the free metal ion. Small concentrations of natural organic matter strongly complex metals ameliorating toxicity. Several electroanalytical techniques are available that allow the assessment of metal species. Recently, a modeling approach, the Biotic Ligand Model (BLM), has been applied to the prediction of acute toxicity. The model accounts for the effects of natural organic matter, pH, and hardness and is able to predict toxicity over several orders of magnitude of soluble metal concentration using only easily determined site parameters. Total metal concentrations in sediment cover several orders of magnitude with no distinction of sediments that cause effects and those that do not except at low total metal concentrations. Relating the metal concentration to the concentrations of sulfide and organic matter binding sites enables the sediments containing higher concentrations of metals to be divided into those that do and those that do not have adverse effects. It is essential that metal speciation be considered to realistically evaluate the potential of metals to pose risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号