首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crustaceans, like all aquatic invertebrates, take up and accumulate metals from a wide range of sources and the trace metal concentrations within their tissues and bodies show great variability. Trace metal uptake in crustaceans occurs from the water and food, either of which may be affected by the physico-chemical properties of the sediment. Accumulated metal concentrations in amphipods are contrasted with those of other crustaceans and examples are given to show how external and internal factors affect bioaccumulation. One of the major pathways for the uptake of trace metals is from solution directly through permeable surfaces including the gills. Changes in salinity and oxygen tension can modify the uptake characteristics from solution particularly in the case of interstitial water within sediments. Infaunal amphipods have direct contact with the sediment and the bioavailabilities of trace metals depend on the strength of the metal binding which is determined by a combination of properties including grain size, organic content, the presence of metals such as lead and iron as well as other ambient environmental conditions. Metal concentrations within amphipod bodies reflect the bioavailabilities of trace metals in their habitat. Body size is one of the major factors contributing to individual variability in trace metal concentrations within species. For some amphipod species, there are differences in trace metal accumulation with gender, breeding and developmental stage. In amphipods, accumulated body metal concentrations are the best biomarkers for environmental metal availabilities. Metal accumulation affects the ecology of crustaceans as a consequence of the energy costs associated with excreting and/or detoxifying the incoming metals. If the costs are significant, then this may result in reduced growth and reproduction. The effects of accumulated metals on communities have yet to be determined. Accumulated metals in crustacean prey species may be transferred along the food chain, but biomagnification in fish appears unlikely. One of the main ecological challenges is the need to link molecular biomarkers with ecologically relevant life history characteristics including growth, survival, reproduction and recruitment.  相似文献   

2.
Over the past decades, comparative physiology and biochemistry approaches have played a significant role in understanding the complexity of metal bioaccumulation in aquatic animals. Such a comparative approach is now further aided by the biokinetic modeling approach which can be used to predict the rates and routes of metal bioaccumulation and assist in the interpretation of accumulated body metal concentrations in aquatic animals. In this review, we illustrate a few examples of using the combined comparative and biokinetic modeling approaches to further our understanding of metal accumulation in aquatic animals. We highlight recent studies on the different accumulation patterns of metals in different species of invertebrates and fish, and between various aquatic systems (freshwater and marine). Comparative metal biokinetics can explain the differences in metal bioaccumulation among bivalves, although it is still difficult to explain the evolutionary basis for the different accumulated metal body concentrations (e.g., why some species have high metal concentrations). Both physiological/biochemical responses and metal geochemistry are responsible for the differences in metal concentrations observed in different populations of aquatic species, or between freshwater and marine species. A comparative approach is especially important for metal biology research, due to the very complicated and potentially variable physiological handling of metals during their accumulation, sequestration, distribution and elimination in different aquatic species or between different aquatic systems.  相似文献   

3.
1. Stable isotopes of carbon are useful for differentiating between freshwater food chains based on planktonic algae or benthic algae, but are reported to be of limited use for identifying food chains based on sedimentary detritus. Because data from marine systems suggest that stable isotopes of sulphur (δ34S values) have potential in this regard, we tested their utility in freshwater lakes.
2. We found that sulphate in the water column of four boreal lakes was enriched in 34S compared to the sulphur in bulk sediments from these lakes. Furthermore, within a given lake, insects known to feed on sediment (directly or via predation) had δ34S values similar to those of sediment, whereas planktonic and benthic invertebrates known to feed on suspended particles had δ34S values similar to those of sulphate in the water column.
3. Using the stable S isotope values of invertebrates that obtain their S from either the sediment or the water column as end members in a two-source mixing model, we show that two fish species obtain their food from both planktonic and sedimentary sources. Furthermore, model results suggest that, as expected, the more benthic-feeding fish species obtains more of its S from the sediment compartment than does the species that feeds in the water-column.
4. Our results suggest that measurements of stable sulphur isotopes provide a means of distinguishing between members of food chains that are based in the water column from those based on sedimentary detritus. As such, they would be a useful complement to stable C isotopes that are used to distinguish between food chains based on planktonic or benthic algae.  相似文献   

4.
海洋沉积物中重金属对底栖无脊椎动物的生物有效性   总被引:1,自引:0,他引:1  
汪飞  黄小平 《生态学杂志》2012,31(1):207-214
海洋沉积物是重金属的重要贮库,而海洋底栖无脊椎动物主要从沉积物中摄取重金属,这些被摄取的重金属能够通过食物链进行传递,进而影响到人类健康。本文总结了近些年来在海洋沉积物中重金属对底栖无脊椎动物生物有效性方面的研究进展,包括海洋底栖无脊椎动物对重金属的吸收途径、沉积物地球化学性质和底栖无脊椎动物生理等生物因素对沉积物中重金属生物有效性的影响。在此基础上,展望了未来研究重点,主要包括近海富营养化对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物消化道中的物理消化过程对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物整个生活史过程中沉积物中重金属生物有效性的变化等。  相似文献   

5.
水生双翅目昆虫是监测水体重金属污染的理想对象。文章归纳用于监测重金属污染的水生双翅目昆虫的种类,重点介绍水生双翅目昆虫在重金属污染下外部形态、内部结构、生化及分子水平的变化,以及相关生物标志物的研究,为水生双翅目昆虫用于水体重金属污染的生物监测提供科学依据。  相似文献   

6.
1. Many invertebrates inhabiting insular aquatic habitats rely on external agents or vectors to disperse. Besides water connections and wind, waterfowl and amphibians are known to mediate passive dispersal of freshwater invertebrates. However, the possibility of dispersal by terrestrial mammals has been largely overlooked. 2. We investigated the potential of both external and internal zoochorous dispersal of aquatic invertebrates by the wild boar (Sus scrofa) in Mediterranean wetlands in the Camargue (France). As wild boar frequently visit wetlands for feeding and wallowing purposes, we hypothesized that they may be important passive dispersal vectors of aquatic invertebrates at a local scale. Dried mud was collected from selected ‘rubbing trees’ used by boars to dispose of parasites. Additionally, faecal pellets were collected from different locations in the wetland area. 3. Seventeen freshwater invertebrate taxa including rotifers, cladocerans, copepods and ostracods hatched from sediment obtained from ‘rubbing trees’, while invertebrates hatching from dried faeces (10 taxa) were mainly rotifers. Dispersing invertebrates were collected up to 318 m from a nearest potential dispersal source. Both abundance and richness of invertebrates significantly decreased with dispersal distance. 4. Our results demonstrate that large mammals such as wild boar can act as dispersal vectors of aquatic invertebrates at a local scale in the wetland area of the Camargue and suggest that external transport may be quantitatively more important than internal transport. As wallowing (mud bathing) is common in many terrestrial mammals, this mode of dispersal may be quite widespread.  相似文献   

7.
Egeler  Philipp  Meller  Michael  Roembke  Joerg  Spoerlein  Peter  Streit  Bruno  Nagel  Roland 《Hydrobiologia》2001,463(1-3):171-184
Sediments contaminated with poorly water-soluble organic chemicals pose a risk to aquatic food chains. Sediment-associated chemicals can be accumulated by endobenthic, sediment-ingesting invertebrates. Some tubificid species – or other benthic annelids – serve as food for benthivorous fish, which thereby ingest the sediment-borne chemicals and may accumulate contaminant concentrations far higher than from water exposure only, and transfer them to organisms of higher trophic levels. For measurement of biomagnification, a sediment based food chain was developed and established in the laboratory. The two-step food chain included the sediment-dwelling freshwater oligochaete Tubifex tubifex (Müller) as a representative species of benthic infauna. The three-spined stickleback (Gasterosteus aculeatus, Linné), a small teleost fish which often feeds primarily on benthic invertebrates, served as a model predator. Spiked artificial sediment and reconstituted water as the overlying medium were used. Experiments were performed using 14C-labelled hexachlorobenzene, a hydrophobic pollutant as a model compound. To examine the influence of benthic prey on the bioaccumulation of the test substance in the predator, fish were exposed to spiked water, spiked sediment, pre-contaminated prey organisms, or combinations of these exposure routes. The results of these experiments indicate that for hexachlorobenzene, the presence of contaminated Tubifex tubifex as a food source in combined exposure leads to significantly higher accumulation in fish than exposure to single pathways.  相似文献   

8.
Distribution of cadmium and lead in a stream ecosystem   总被引:1,自引:3,他引:1  
Cadmium and lead were detected in all components of the stream that were examined. Cadmium was present in similar concentrations in both fishes and sediments. Aquatic insects, however, exhibited higher concentrations of cadmium than did sediments. Lead concentrations in sediments and aquatic insects were similar, but higher than concentrations in fishes. Snails contained the highest level of lead and had noticeably greater amounts of the metal than did aquatic insects. In general, concentrations of both metals increased successively from water to fish to sediments to aquatic invertebrates.  相似文献   

9.
Summary 1. The uptake of heavy metals via the alimentary tract can be an important factor for the metal budget of fish. 2. Concepts such as biomagnification, bioaccumulation, biotransference, or concentration factors, convey little information about the real threat originating from heavy metals in an aquatic food chain. 3. In polluted aquatic ecosystems the transfer of metals through food chains can be high enough to bring about harmful concentrations in the tissues of fish. This relationship is called the food chain effect. 4. Two kinds of ecological factors influence the food chain effect: firstly, high levels of contamination of the food, and, secondly, the reduction of species diversity. When susceptible species are eliminated, metal-tolerant food organisms may become dominant. Their tolerance may be based either on their ability to accumulate excessive amounts of metals or to exclude heavy metals from the tissues. These two strategies represent feedback mechanisms which may enhance or weaken the food chain effect. 5. It is concluded that future investigations on transference of heavy metals to fish must take into more careful consideration the specific ecological situation of a given environment.  相似文献   

10.
Routes of aquatic allochthonous inputs (aquatic subsidies) to detrital food webs are studied, as is the effect of aquatic subsidies on the functional and taxonomic structure of soil invertebrate communities in coastal ecosystems. The study took place in the coastal zone of an oxbow lake of the Pra River in the Oka Reserve. The results indicate a strong dependence of soil animals in the coastal habitats on aquatic subsidies. Isotopic analysis shows that aquatic resources enter soil food webs not only via predators feeding on flying insects or aquatic prey, but also via saprophages decomposing organic debris of aquatic origin. The contribution of aquatic subsidies to the energy balance of soil invertebrates decreases rapidly with increasing distance from the lake. The fraction of aquatic carbon in tissues of collembolans and saprophages is negligible already a few meters from the water edge. The dependence of predatory invertebrates on aquatic resources can be traced at somewhat greater distance (tens of meters).  相似文献   

11.
Dormant aquatic invertebrates can remain viable in riverbed sediment during dry phases, forming a source for recolonisation during wet periods. Regional differences in capacity for invertebrates to survive drying in this way are poorly understood, but may indicate regional differences in vulnerability to altered flow regimes. We compared diversity of invertebrates in dry sediment from intermittent rivers in temperate and semi-arid Australia after 4–8 weeks of drying. We predicted adaptations of semi-arid biota to severe and unpredictable drying would make dry sediment a more significant recolonisation source, with higher relative diversity when compared with temperate rivers. Emerging aquatic invertebrate assemblages were compared to those sampled in nearby pools, as a common drying refuge. Relative taxa richness in rehydrated sediments was higher in the semi-arid region (83 ± 16% of pool taxa) than the temperate (47 ± 6% of pool taxa), despite lower overall richness (24 taxa in semi-arid, 32 taxa in temperate). Semi-arid rivers had greater potential for dry riverbeds to act as a source for recolonisation, given high relative diversity and abundance in dry sediment, combined with the frequent absence of alternative refuges. However, dry riverbeds in both regions provided a significant short-term refuge for aquatic invertebrates.  相似文献   

12.
重金属污染是世界各国面临的最为棘手的问题之一,对生态系统和食品安全构成了严重威胁。作为生态系统中食物链和食物网的重要环节,植食性昆虫是环境中重金属迁移、积累的重要媒介,其因重金属污染而受到的影响引起了大家的关注。本文综述了从2007至2018年重金属污染对植食性昆虫影响的研究进展。昆虫受重金属胁迫的研究途径有人工饲料添加、野外田间暴露、“土壤-植物-昆虫”食物链传递以及体外注射等。积累在植食性昆虫体内的过量重金属可导致其存活率、繁殖力和种群增长率降低,生长发育迟缓。重金属污染对植食性昆虫的生理生化毒性包括细胞超微结构破坏和DNA损伤,体内能量物质含量降低,酶活性、基因表达改变等。植食性昆虫会通过重金属硫蛋白、解毒酶活性的诱导等机制抵御重金属的毒害,从而对低浓度、长期重金属暴露产生生态适应性,甚至提高对其他逆境(如农药等)的耐受性。  相似文献   

13.
Abstract

Heavy metal bioaccumulation and translocation properties of aquatic plants are interesting because of their potential use in phytoextraction. However, there is not enough knowledge about the seasonal changes of the metal distribution properties of aquatic plants. Our study focused on seasonal variation of some heavy metals in relation to their bioaccumulation and translocation in Nuphar lutea, a floating leaved, widespread plant that is important to wildlife. In this study, N. lutea, corresponding sediment and water samples were collected at different seasons from Lake Abant (Turkey) and analysed for their heavy metal content (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation and translocation of heavy metal ratios were calculated seasonally. It was found that Cr and Zn were actively transported from sediment to the root, where they accumulated especially in summer; it was also shown that Cu, Mn and Zn were not only taken up from the sediment but also from the surrounding water. The investigations suggested that translocation ratios for leaf/root of Pb, Cr, Mn and Zn reached their highest levels in spring. It was found that the bioaccumulation and translocation of heavy metals at different parts of N. lutea changes with respect to season and the type of heavy metal.  相似文献   

14.
15.
水体沉积物中酸可挥发性硫化物(AVS)研究进展   总被引:14,自引:1,他引:14  
刘景春  严重玲  胡俊 《生态学报》2004,24(4):812-818
水体沉积物中酸可挥发性硫化物 (AVS)是总硫含量中活性最高的部分 ,是沉积物中有毒重金属的重要结合形态 ,它的含量在很大程度上影响着沉积物重金属的生物有效性 ,从而作为沉积物中有毒重金属环境污染评价的一个重要指标 ;就十多年来水体沉积物中酸可挥发性硫化物 (AVS)的研究进行了综述。概述了 AVS的测定方法及其影响因素 ;探讨了水体沉积物中 AVS含量时空变化的规律 ;同时就目前“同时可提取重金属”(SEM)与 AVS摩尔浓度比值和水体沉积物重金属生物毒性关系的研究进行了概括和分析。  相似文献   

16.
重金属在海洋食物链中的传递   总被引:36,自引:0,他引:36  
王文雄  潘进芬 《生态学报》2004,24(3):599-604
近年来 ,金属在不同海洋食物链中摄食富集的定量研究得到越来越多的关注。自然环境中生物体内金属的浓度并不一定和生物在食物链中所处的营养级有相关关系 ,金属在生物体内的富集还受到生物的同化、排出等过程以及其它生理生化因子的影响。在经典的海洋浮游生物食物链中 (浮游植物→桡足类→鱼类 ) ,桡足类往往可以很有效地排出体内的金属 ,同时鱼类的金属同化率又很低 ,所以该食物链中金属的浓度随食物链水平增加而减少。目前研究发现只有甲基汞和铯 Cs会被食物链所放大。在以腹足动物为顶级捕食者的底栖食物链中 ,因为生物结合金属的效率很高 ,高同化率和低排出率导致金属浓度在生物体内得到放大。重金属在生物体内的可利用性可以通过测定同化率、排出率等参数、并结合考虑生物对该金属的消化行为 ,运用一个简易的动态模型来估算。已有的研究中人们多考虑金属的化学性质对食物链传递的影响。着重介绍了近年来国外对金属在不同海洋食物链 (底栖和浮游 )中的传递的研究成果 ,强调在金属的生物可利用性评估中 ,要充分考虑到动物的生理、生化过程的影响 ,同时也必须认识到不同的海洋生物有着复杂且不同的金属代谢机制  相似文献   

17.
Two points are evident from a review of the literature describingfeeding territoriality in aquatic insects. First, feeding territorialityis much more common in this group than was previously recognized.Second, most of the examples involve species that have smallforaging areas and harvest rapidly renewing resources, suchas filterable particles and attached microalgae. To interpretthese patterns, I discuss how the net benefits of territorialdefense vary as a function of several components of food availability. I present the results of recent laboratory and field experimentstesting cost-benefit models that predict patterns of territorysize and defense frequency. Feeding-territory size in grazingcaddisfly larvae increases with the resident's body size andis inversely related to food abundance, which agrees with thepredictions of several models of optimal territory size. Twokinds of stream insects that rely on food items delivered bywater currents (i.e., surface-feeding water striders and filter-feedinglarval black flies) respond to increases in food abundance byreducing their allocation of time to territorial defense.Inblack flies, complex interactions between competitor densityand food abundance also influence the amount of time spent defendinga territory. I consider several connections between territorial behaviorand interspecific competition. The distribution and abundanceof both territorial species and their competitors may dependin part upon how the costs and benefits of feeding territorialityvary along resource abundance gradients. The tendency of someterritorial grazers to settle preferentially near conspecificsmay occur because animals living in groups exclude interspecificcompetitors more efficiently than isolated individuals, whichsuggests some simple tests of optimal group size models. I conclude by summarizing the strengths and weaknesses of thesestudy systems, both as a source of new and broader theoriesof feeding territoriality, and as a testing ground for thosetheories. An important strength of these consumer-resource systemsis the ability to conduct realistic experimental studies examiningthe causes and consequences of territoriality. One importantweakness is the lack of information on the time-energy budgetsof these insects. The acquisition of such information deservesa high priority, since it will permit more rigorous tests ofcost-benefit models that evaluate the adaptive significanceof territorial behavior.  相似文献   

18.
1. Bioturbation, by definition, changes the structure and properties of sediments, thereby altering the environment of the bioturbator and other benthic species. In addition to the indirect effects of sediment reworking (e.g. changes in water quality), bioturbating species may also directly interfere with other species via competition. This study aims, therefore, to examine both the direct and indirect effects of sediment reworking by an opportunistic detritivore on survival and growth of a specialised mayfly species. 2. Bioturbation was imposed by adding different densities of the midge Chironomus riparius to clean and polluted sediments. Changes in water quality and sediment properties, and survival and growth of the mayfly Ephoron virgo were assessed. 3. Chironomid density had a strong negative effect on the concentrations of metals, nutrients and particles in the overlying water, but increased the penetration of oxygen into the sediment. Survival and growth of E. virgo were strongly reduced in the presence of chironomids. In the polluted sediment, the activity of chironomids enhanced the negative effects of pollution on E. virgo. In the clean sediment, inhibition of the mayfly was even more pronounced. 4. This suggests that direct disturbance by C. riparius was more important than indirect changes in water quality, and over‐ruled the potential positive effects of improved oxygen penetration. The results indicated that the distribution of small insects, such as E. virgo, can be limited by bioturbating benthic invertebrates.  相似文献   

19.
Luoma  Samuel N. 《Hydrobiologia》1989,176(1):379-396
It is clear from available data that the susceptibility of biological communities to trace element contamination differs among aquatic environments. One important reason is that the bioavailability of metals in sediments appears to be altered by variations in sediment geochemistry. However, methods for explaining or predicting the effect of sediment geochemistry upon metal bioavailability are poorly developed. Experimental studies demonstrate that ingestion of sediments and uptake from solution may both be important pathways of metal bioaccumulation in deposit/detritus feeding species. Relative importance between the two is geochemistry dependent. Geochemical characteristics of sediments also affect metal concentrations in the tissues of organisms collected from nature, but the specific mechanisms by which these characteristics influence metal bioavailability have not been rigorously demonstrated. Several prerequisites are necessary to better understand the processes that control metal bioavailability from sediments. 1) improved computational or analytical methods for analyzing distribution of metals among components of the sediments; 2) improved computational methods for assessing the influences of metal form in sediments on sediment-water metal exchange; and 3) a better understanding of the processes controlling bioaccumulation of metals from solution and food by metazoan species directly exposed to the sediments. Such capabilities would allow mechanistic explanations essential to the development of practical tools sought for determining sediment quality criteria for metals.  相似文献   

20.
This study aimed to characterize the food intake by the fish assemblage inhabiting aquatic macrophytes stands, evaluating the changes in food availability among the periods of the hydrologic cycle and the trophic responses of the fish assemblage along with food availability. Fish sampling was conducted in stands of aquatic macrophytes (predominantly Paspalum repens, Poaceae) along banks of the Trombetas River during the four hydrologic periods (rising, high, receding, and low water level) that represent different phenological conditions of the habitat. The food consumption by the fish assemblage was analyzed for 41 species with stomach contents. The assemblage fed mainly on aquatic insects, periphytic algae and detritus. Food availability analysis showed that food resources changed among periods. Fifteen species were present in more than one period and most of those species showed dietary changes along with the hydrologic cycle, feeding mainly on invertebrates in the rising water period and periphytic algae and detritus in receding and low water periods. Only four species showed sufficient numbers to be analyzed in relation to diet and food availability along the at least three hydrologic periods, two of which showed a positive correlation between diet and food availability for three of the four periods; the other two species did not show this correlation, and presented omnivorous habits. In all cases, the selectivity values for the most important food items were near zero, indicating that intake was not motivated by feeding preference. Our results suggest that both trophic plasticity and omnivorous diets are important adaptations for species that inhabit temporally variable habitats such as aquatic macrophytes stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号