首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment from lakes on abandoned coal mines in the Midwestern U.S.A. was examined to determine the factors controlling chemical composition and the role the sediment plays in lake neutralization. Sediment concentrations of many cations, (especially heavy metals) are strongly correlated with sediment sulfide concentration, but poorly correlated with the pH of the overlying water. Leaching the sediment of one lake with 1 N ammonium acetate, 0.1 N HCl, and 6 N HCl revealed that cations were mostly bound in weak acid-leachable and strong acid-leachable forms. The weak acid-leachable form is likely to be metal sulfides and calcium carbonate. The sulfide-poor sediments of extremely acid lakes contained few weak acid-leachable cations. Raw mine-spoil contained large amounts of easily leached cations. There is little relationship between changes in sediment chemistry over time determined from cores of lake sediment and past lake pH. Rates of sulfide deposition were examined in sediment cores because sulfate reduction and deposition has been suggested as a major source of alkalinity in lakes influenced by acid precipitation. Although the rate of sulfate deposition in surface mine lakes is high, it alone seems to be insufficient to cause neutralization.  相似文献   

2.
ABSTRACT

Coimbatore is one of the industrial cities in Tamil Nadu, India, which has been experiencing rapid urbanization and population growth. Coimbatore is also known for its unique freshwater lakes environment and serves as a rich ecosystem. However, the assessment of heavy metal levels in aquatic environments is limited. This study was aimed to investigate physicochemical parameters, heavy metals level and sources, and ecotoxicity in sediments collected from five different lakes in Coimbatore. The concentrations of heavy metals (Cr, Cu, Zn, As, Cd, and Pb) in sediments were determined by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). Hg level was measured using Advanced Mercury Analyzer (AMA). The determined heavy metal concentrations in sediments varied significantly according to the lake location and consistent with local human linked anthropogenic activities. The metal concentrations in urban lakes were exceeding both the Sediment Quality Guidelines (SQGs) and the probable effect levels” (PELs) mostly; e.g., in sediments from the Lake Ukkadam, the values of 5.08 and 203.32 mg kg-1 dry weight were observed for Hg and Cu, respectively. The ecotoxicity test with ostracods exposed to the sediment samples revealed that mortality ranged between 6 and 23% for countryside lakes and 28 and 88% for the lakes within urban Zone. We used Spearman rank-order correlation and Principal components analysis (PCA) to assess the sources of pollutants and if they related to anthropogenic pressure and eutrophication of lakes. The main sources of heavy metals from studied lakes differed significantly. Urban and industrial effluents were dominant sources in urban lakes. Agricultural runoff, domestic wastes, and natural weathering were responsible for the metal sources in country lakes. This study provides baseline information on the heavy metal pollution status of sediments in the freshwater lakes in Coimbatore, which will be useful for pollution control measures to prevent possible metal sources on these lakes and impose appropriate management practices and continuous monitoring by relevant authorities.  相似文献   

3.
Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.  相似文献   

4.
西藏达则错盐湖沉积背景与有机沉积结构   总被引:1,自引:0,他引:1  
以西藏拟溞(Daphniopsis tibetana Sars)为优势浮游动物物种的低盐度盐湖是西藏湖泊的一个重要类型,以达则错为代表,分析了其沉积背景及沉积物组成。结果如下:(1)湖泊敞水区无机沉积以内生化学沉积为主,可代表深水盐湖无机沉积物的自然沉积过程。(2)达则错盐湖浮游植物以蓝藻、硅藻、裸藻、绿藻为主,总生物量11.35 mg/L;浮游动物生物量为4.92 mg/L,其中西藏拟溞占 82.30%;浮游植物残体受盐梯度影响在盐梯度层之上聚集,而浮游动物残体及粪粒(Fecal pellets)因外表有碳酸盐附着可穿过盐梯度层沉积湖底,生物残体与浮游动物代谢产物构成了沉积有机物的物质基础。(3)表层沉积物平均含水量为66.70%,粒径0.004-0.02 mm范围内的颗粒物含量最大,占20.42%,其次为<0.004 mm的粘土,占4.53%。(4)表层沉积物总有机碳(TOC)平均含量为27.99 mg/g(干重),其中颗粒有机碳(POC)约为18.11 mg/g,占TOC的64.70%;在POC中,西藏拟溞粪粒贡献最大,约占POC的60.48%,占TOC的39.06%,占沉积物总量的1.12%,其次为西藏拟溞残体,占POC的38.85%。分析结果表明盐湖因其独特的水化学和生物学特征具有较强的沉积能力,以化学沉积为主的无机沉积及以西藏拟溞粪粒和残肢碎屑为主的有机沉积构成了该类型盐湖颗粒物沉降及沉积的主要过程。  相似文献   

5.
Although catchments have been implicated as an important source of metals to lakes, the catchment contribution of different metals is poorly known, and the anthropogenic contribution is not known at all. We determine the anthropogenic lake sediment burdens of Zn, Cu, Ni, Cr, and Pb for several Quebec and Ontario lakes, not subject to point source loading, to obtain estimates of atmospheric loading and inputs from terrestrial sources. To do this, we first collected multiple cores across 11 lake basins to estimate the whole-lake Pb burdens. As the whole-lake Pb burdens did not differ among lakes that spanned over two orders of magnitude in drainage ratios (drainage basin area/lake area), we conclude that catchment retention of anthropogenic Pb is complete. The anthropogenic Pb burdens were then used as a correction for focusing for the other metals. Among the metals, Cr and Ni were the most readily exported from drainage basins, followed by Cu. Zn showed no increase with drainage ratio, indicating Zn to be effectively retained by catchments. The export coefficients of the Pb corrected metals correlate well with ocean residence time, revealing a similar metal sorption/precipitation sequence in both soils and oceans. Sediment metal burdens provide a relatively easy way to obtain not only metal export coefficients from drainage basins, but also the atmospheric deposition of anthropogenic metals (e.g. Pb: S.E. Quebec, 950 mg*m–2: Laurentians, north of Montreal, 420 mg*m–2). The export coefficients are not only simpler to obtain than by mass balance measurements, but, in addition, identify the anthropogenic component.  相似文献   

6.
The distribution, sources and potential ecological risk of heavy metals in the sediment of lakes in eastern China and other areas of the world that have undergone rapid economic development have been widely researched by scholars. However, this is not true for heavy metals in the sediment of rump lakes in the arid regions of China and world-wide. Because of this, we chose Aibi Lake to serve as a typical rump lake in an oasis in an arid area in northwest China for our study. Sediment samples were collected from the lake and then the quantities of the heavy metals Pb, Ni, Cd, Cu, Zn, Hg and Cr were measured. Then using a variety of statistical methods, we analyzed the distribution, sources, pollution status and the potential ecological risk of these metals. The results show that: (1) The amounts of the seven heavy metals all fell within the Second Soil National Standard, but the average and maximum values were all higher than the background values of Xinjiang in northwest China. (2) Multivariate statistical analysis determined that the Cd, Pb, Hg and Zn in the sediment were mainly derived from man-sources, and Cu, Ni, and Cr were mainly from the natural geological background. (3) Enrichment factor analysis and the geo-accumulation index evaluation method show that Cd, Hg and Pb in the surface sediment of the Aibi Lake were at low and partial pollution levels, while Zn, Cr, Ni and Cu were at no and low pollution levels. (4) Calculation of the potential ecological hazards index found that, among the seven tested heavy metals, Cd, Hg and Pb were the main potential ecological risk factors, and the contribution of each was 42.6%, 28.6%, and 24.0%, respectively. Cd is the main potential ecological risk factor, followed by Hg and Pb. This work revealed that recent economic development of the Aibi Lake Basin has negatively influenced the accumulation of heavy metals in the sediments of the lake, and, therefore, we should pay increasing attention to this problem and take effective measures to protect the ecology of the Aibi Lake Basin. This work can provide a scientific basis for an early warning of heavy metal pollution and for protection of the environment. Furthermore, it can serve as a reference when creating policies for the economic development in Aibi Lake Basin and environmental protection of rump lakes in arid regions of northwest China and other areas of the world.  相似文献   

7.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.  相似文献   

8.
The first part of the paper discusses the significance of using either concentration or accumulation values for expressing the results of investigations of lake sediment cores aimed at studying the history of heavy metal pollution. Neither the values for heavy metal concentration in the lake sediment, whether expressed per gram dry sediment or per gram soluble (organic) sediment, nor the values for their total annual accumulation per unit area of the lake bottom, can, on their own, provide an accurate picture of past pollution conditions, but when considered in combination they render a fairly reliable and detailed interpretation. The second part of the paper deals with Pb, Cd and Hg analyses of cores of varved sediments from several lakes in N. Sweden. Pb and Cd pollution increased during the second half of the 19th century. In most lakes, Hg pollution seems first to have started during the 20th century. Marked increases in both concentration and accumulation of heavy metals took place during the 20th century. For recent decades, the estimated accumulation rates of heavy metals from anthropogenic sources are: Pb 0.5–1.5 µg cm–2 yr–1, Cd 15–30 ng cm–2 yr–1 and Hg 1–2 ng cm–2 yr–1, Higher values were recorded in lakes affected by local emissions.  相似文献   

9.
Concentrations of aluminium, cadmium, chromium, cobalt, copper, iron, lead, nickel and zinc were determined in surface water, benthic sediments, and the gills, liver and stomach muscle tissues of Oreochromis niloticus and Clarias gariepinus in peri-urban lakes Chivero and Manyame, Zimbabwe. Five sites were sampled in each lake once per month in November 2015, February, May, August and November 2016. Pollution load index detected no metal contamination, whereas the geo-accumulation index reflected heavy to extreme sediment pollution, with Fe, Cd, Zn, Cr, Ni and Cu present in both lakes. Significant spatial temporal variations were detected for Al, Cr, Cu and Pb across sites within and between the two lakes. High Fe, Al and Cr concentrations in water and sediments in lakes Chivero and Manyame derive from geogenic background sources in addition to anthropogenic loads and intensity. Elevated concentrations of Al, Pb, Cu, Cd, Fe and Zn detected in gills, liver and stomach tissue of catfish corroborate concentrations in water and sediments, and pose the highest ecological and health risk for hydrobionts in lakes Chivero and Manyame. Contiguity of peri-urban lakes exposes them to similar threats, necessitating creative water management strategies, which ensure ecological continuity.  相似文献   

10.
Nitrogen mass balances and denitrification rates in central Ontario Lakes   总被引:1,自引:1,他引:0  
Nitrogen mass balances for seven unproductive lakes and 20 forested catchments in central Ontario were measured between 1977 and 1989. Average annual lake denitrification rates calculated with the N/P ratio method were strongly correlated with summer anoxic factor (extent of surficial sediment anoxia) whereas denitrification rates calculated with a210Pb sediment N accumulation method were poorly correlated with the anoxic factor suggesting that the N/P method is superior. Substantial denitrification occurred in all lakes — an average of 36% of TN inputs or 75% of the net gain. On a regional area-weighted basis, 67% of bulk atmospheric TN deposition was stored or denitrified terrestrially, 12% was denitrified in lakes, 4% was stored in lake sediments, and 17% was exported from lakes. N/P ratios were generally less in streams than in precipitation suggesting preferential N retention in catchments, whereas the N/P ratios in lake outputs were slightly higher than lake input ratios, suggesting preferential P retention in lakes. This is consistent with the notion that P-limited lakes can exist adjacent to N-limited forests.  相似文献   

11.
SUMMARY. Cores of sediment from Llyn Peris and Llyn Padarn, two linked lakes in North Wales, are described. Dating of sediments by 14C techniques, investigations of remanent geomagnetism and estimates of recent deposition rates from measurements of 137Cs, indicate that in Padarn an unbroken record of the last 7000 years has been obtained. In Peris, the upper lake, the rate of sediment accumulation is greater than in Padarn and the sediment has been considerably disturbed. Sediment chemistry is related to the climatic and industrial history of the area. Some features of the chemical profiles in Padarn are similar to those of lakes in the English Lake District, and there is evidence to suggest that erosion has increased in the catchment since c . 3500 years ago. This is more recent than similar increases in erosion reported for the English Lake District. In Peris, industrial activity during the past few hundred years has resulted in high levels of copper and calcium in the surface regions of sediment profiles.  相似文献   

12.
Murray  T. E.  Gottgens  J. F. 《Hydrobiologia》1997,345(1):39-44
Isotopes like 210Pb and 137Cs are effectivetools for determining chronology in lake sediments. Once the chronology is established, environmentalchanges in lakes can be investigated, and the causesfor those changes can often be inferred. 210Pband 137Cs profiles were constructed for thesediments of Crystal Lake, Connecticut, USA. Thegeochronology was used to determine the historicalchanges in organic matter and P accumulationin the sediment. Those profiles showed twosignificant periods of sedimentation which correlatewith major precipitation events. DecreasingP accumulation in the sediments of the lakein the last decade was also correlated with increasingeutrophication as documented by increases inepilimnetic P and decreases intransparency.  相似文献   

13.
Yang  Handong  Rose  Neil L.  Battarbee  Rick W.  Monteith  Don 《Hydrobiologia》2002,479(1-3):51-61
Analyses of trace metals on multiple sediment cores from the whole-lake basin of Lochnagar, Scotland, show that the depth of departure from stable values towards a rapid increase of the Pb/Ti and Hg concentration profiles provides a good dating feature for the 1860s. In relatively shallow areas of the lake, inferred sediment accumulation rates and the trace metal inventories change with water depth, but in the deep water area, sediment accumulation rates are lower than in most other areas of the lake. Mercury, Pb, Cu and Zn inventories in the sediments accumulated since 1860 in the deepest area are 61%, 64%, 73% and 56% of the corresponding average inventories for the whole sediment area of the lake, respectively. This is mainly due to low sediment accumulation in the deep basin. This finding differs from the expected sediment focusing pattern and makes quantitative interpretations of palaeolimnological features using sediments from the deep area of this lake difficult. The influence of sediment focusing from the north-eastern side, the largest portion of the sediment area of the lake basin, on the deepest area of the lake may be limited, so the sediments in the north-east could be difficult to be transported to the deepest area through sediment focusing. Therefore, the sediments in the deepest area of the lake may not represent the whole-lake basin well for the relative abundances of different types of fossils.  相似文献   

14.
In the Azores, the advanced trophic state of the lakes requires a fast intervention to achieve the good ecological status prescribed by the Water Framework Directive. Despite the considerable effort made to describe the phytoplankton growing on the water column, the lack of information regarding the microbial processes in sediments is still high. Thus, for the successful implementation of internal management actions, the present work explored the relationships between geochemical profiles and dominant members of the bacterial community in sediments from eutrophic Azorean lakes. Lake Azul geochemical profiles were quite homogeneous for all parameters, while in lake Furnas the total iron profile presented a peak below the aerobic layer. For lake Verde, the concentrations of all studied parameters (20 ± 2% loss-on-ignition; 2.10 ± 0.08 mg g?1 total phosphorus; 1.31 ± 0.50 mg g?1 total nitrogen; 8.06 ± 0.13 mg g?1 total iron) in the uppermost sediment layer were approximately two times higher than the ones in sediments from other lakes, decreasing with sediment depth. The higher amounts of phosphorus and organic matter in lake Verde suggested a higher internal contribution of phosphorus to eutrophication. The dominant members of the sediment bacterial community, investigated by denaturing gradient gel electrophoresis, were mostly affiliated to Proteobacteria phylum (Alpha-, Delta-, and Gamma-subclasses), group Bacteroidetes/Chlorobi and phylum Chloroflexi. The Cyanobacteria phylum was solely detected in sediments from lake Verde and lake Furnas that presented the highest amounts of nitrogen and phosphorus both in the water column and sediments, while the other phyla were detected in sediments from the three studied lakes. In conclusion, management measurers to achieve the good ecological status until 2015 should be distinct for the different lakes taking into account the relative magnitude of the nutrient sources and the bacterial diversity in sediments.  相似文献   

15.
In this study,PCR-denaturing gradient gel electrophoresis (DGGE) was applied to analyze the microbial communities in lake sediments from Lake Xuanwu,Lake Mochou in Nanjing and Lake Taihu in Wuxi.Sediment samples from seven locations in three lakes were collected and their genomic DNAs were extracted.The DNA yields of the sediments of Lake Xuanwu and Lake Mochou were high (10 μg/g),while that of sediments in Lake Taihu was relatively low.After DNA purification,the 16S rDNA genes (V3 to V5 region) were amplified and the amplified DNA fragments were separated by parallel DGGE.The DGGE profiles showed that there were five common bands in all the lake sediment samples indicating that there were similarities among the populations of microorganisms in all the lake sediments.The DGGE profiles of Lake Xuanwu and Lake Mochou were similar and about 20 types of micro-organisms were identified in the sediment samples of both lakes.These results suggest that the sediment samples of these two city lakes (Xuanwu,Mochou) have similar microbial communities.However,the DGGE profiles of sediment samples in Lake Taihu were significantly differ-ent from these two lakes.Furthermore,the DGGE pro-files of sediment samples in different locations in Lake Taihu were also different,suggesting that the microbial communities in Lake Taihu are more diversified than those in Lake Xuanwu and Lake Mochou.The differences in microbial diversity may be caused by the different environmental conditions,such as redox potential,pH,and the concentrations of organic matters.Seven major bands of 16S rDNA genes fragments from the DGGE profiles of sediment samples were further re-amplified and sequenced.The results of sequencing analysis indicate that five sequences shared 99%-100% homology with known sequences (Bacillus and Brevibacillus,uncultured bacteria),while the other two sequences shared 93%-96% homology with known sequences (Acinetobacter,and Bacillus).The study shows that the PCR-DGGE tech-nique combined with sequence analysis is a feasible and efficient method for the determination of microbial com-munities in sediment samples.  相似文献   

16.
17.
Multi‐decadal to centennial‐scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within‐lake calibration models developed using diatom assemblages collected from surface sediments across a water‐depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near‐shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate‐driven influences, and can provide a sensitive record of past drought. Our lake‐sediment records indicate two periods of synchronous signals, suggesting a common large‐scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900‐1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo‐lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models.  相似文献   

18.
Prior studies on Lake Naivasha relevant to understanding sediment dynamics include a bathymetric map, a paleolimnological study of fossil invertebrate assemblages in lake sediment, an overview of lake level fluctuations throughout the 20th century, and identification of a dynamic assemblage of macrophyte zones that has responded both to these changes in lake level and to more recent, alien species. Sediment samples collected from the rivers systems and the lake were examined physically and chemically. River sediment characteristics reflect geology and geomorphological processes in the catchment, whereas lake sediment stratigraphy has responded to past lake level changes. Such changes have caused significant changes in aquatic vegetation assemblages. Present day sediment dynamics in the lake are governed by the presence of river point sources in the north and wave-induced re-suspension, such that sediments introduced by rivers are transported in easterly and southerly directions, and are eventually deposited in the eastern, central and southern parts of the lake. Sedimentary deposition is also occurring in northern areas that once were protected by papyrus swamp vegetation but now only have a narrow fringe, highlighting the important role of swamp vegetation in filtering out suspended particulates and thereby controlling water quality in the lake. Geochemical analyses of river and lake sediments indicate that they represent fairly undisturbed background conditions. Higher-than-expected concentrations of cadmium, iron, nickel and zinc found in both river and lake sediment are likely to derive from volcanic rocks and/or lateritic soils found in the lake catchment.  相似文献   

19.
Temperatures of the water column and upper 5 cm of sediment were monitored over a yearly cycle in two South Carolina lakes. Occasional supportive data were also obtained for several lakes in north central Florida. Plans are given for a new type of sediment-interface sampler that is useful in obtaining detailed temperature or chemical profiles extending from the sediment surface upward. The sampler was used in the investigation to demonstrate the thermal microstratigraphy near the mud surface. The deep-water (16 m) temperature for the larger of the two South Carolina lakes changes seasonally from 10·5°C in February to 18·0°C in July. The smaller, shallower (11 m) lake follows an almost identical seasonal cycle but is always 4·0°C cooler because the larger lake receives a heated effluent that has a long-term effect on hypolimnetic temperatures. In both lakes the uppermost sediments are warmer than the overlying water by an average of 0·1 to 1·0°C during the warming period. Heat accretion near the bottom continues but is slower after stratification, probably due to the relatively low temperature (density) differential between water layers in these warm lakes. Cooling in deep water begins long before breakdown of stratification and is apparently caused by cold density currents from the shallows. The coldest water is located in a thin layer just over the sediment. There is evidence from one of the South Carolina lakes and from the Florida lakes that when the density flows begin they at first flow over a warmer water layer that is more dense due to a high electrolyte content derived from the sediment. There is a slight deep water warming in all of the lakes when stratification breaks down. After destratification, the deep water is cooled by turbulence rather than density flows. The surface sediments at this time are consistently warmer than the hypolimnion and remain so through the cooling period. There is strong evidence from one Florida lake that turbulence mixes the upper 3 cm of sediment during the isothermal period. It is concluded that the sediment-water interface of a warm lake will in general experience greater heat flux than that of a comparable cold lake during the periods of temperature maximum and minimum. Conversely, there is likely to be less heat flux during the warming and cooling periods of warm lakes than of cold lakes. Several expected differences in seasonal patterns of temperature and water movement in the deep water of warm and cold lakes are discussed.  相似文献   

20.
J. Kada  M. Heit 《Hydrobiologia》1992,246(3):231-241
We determined the inventories of four anthropogenic trace elements, Pb, Zn, As, and Cd, and two radionuclides, 137Cs and excess 210Pb, in sediment cores collected from eight remote lakes in the Adirondack region of the northeastern United States. The inventories of all six substances vary considerably among the sediment cores, although the lakes and their associated catchments must have received similar cumulative per unit area atmospheric inputs of these substances. These variations are highly correlated, indicating that the trace elements and radionuclides are affected in a coherent way by the processes controlling their deposition to the sediments of these lakes. Assuming that the anthropogenic trace element inventories in each sediment core are enhanced or depleted relative to cumulative atmospheric deposition to the extent indicated by the sediment core inventories of either 137Cs or excess 210Pb, we produced estimates of the cumulative atmospheric inputs of the four anthropogenic trace elements to this region. Comparison of the excess 210Pb normalized anthropogenic Pb, Zn, Cd inventories of the Adirondack sediment cores with excess 210Pb normalized inventories of the same substances in a group of South Central Ontario lakes suggests that the Adirondack region has received greater cumulative anthropogenic inputs of Pb, Zn and Cd by a factor of 1.6, 4.5, and 2.9, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号