首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bottom ash is a coal combustion product (CCP) obtained from burning of pulverized coal to produce electricity. Most of the bottom ash from pulverized coal combustion (PCC) plants is disposed of in landfills and/or ash ponds. Over the last decade, there has been increased attention aimed toward the use of PCC bottom ash in geotechnical applications. The particle size distribution of pulverized coal combustion (PCC) bottom ash is similar to that of natural sand. Natural sand is commonly used in the construction industry in place of cohesive soils by adding admixtures to amend its properties. Several studies have been completed to determine the properties of bottom ash amended with bentonite. However, due to significant volume change characteristics of bentonite, soils or similar granular materials amended with it need to be evaluated for their swelling behavior. In addition, studies on bottom ash-bentonite mixtures have shown that strength and stiffness characteristics of these mixtures change significantly with curing. Therefore, in order to evaluate the use of bottom ash as a fill or landfill liner material, this study was initiated to investigate the effect of curing and moisture content on the swelling characteristics of pulverized coal combustion bottom ash amended with bentonite. Bottom ash specimens containing 15 and 20 percent bentonite and prepared at 14, 16 and 18 percent initial moisture content were tested in this investigation. Results presented show the swelling characteristics of bottom ash-bentonite mixtures with curing age up to 60 days.  相似文献   

2.
Utilization of bottom ash from burning of pulverized coal in construction-related applications has received some attention within the last decade. Its use in geotechnical engineering applications is still very limited, however. Within the last few years several studies have been completed to evaluate strength, stiffness, and durability properties of pulverized coal combustion (PCC) bottom ash mixed with various admixtures. Studies have shown that the physical properties of bottom ash obtained from burning of pulverized coal are similar to that of natural sand with particle sizes ranging from fine gravel to fine sand and low percentages of silt and clay sized particles. However, unlike sand, chemical composition of bottom ash results in change of strength and stiffness characteristics of the bottom ash-admixture mixtures with time. In this study, change in strength and stiffness characteristics of Illinois PCC bottom ash and bentonite mixtures with time are evaluated. A series of unconfined compression tests on bottom ash-bentonite mixtures at various curing ages was performed in the laboratory. Results presented show that strength and stiffness of bottom ash-bentonite mixtures changed significantly with time.  相似文献   

3.
This study examines the suitability of pozzolanic fly ash as a hydraulic barrier and the use of bentonite to enhance geotechnical properties of fly ash. The behavior of fly ash is studied not only with water but also with different pore fluids, such as acid, alkali, salts, and neutral organic fluid to assess its chemical compatibility. While some geotechnical properties of fly ash meet the requirements of liner material, the disadvantage of using of fly ash alone is that it has a low cation exchange capacity and high hydraulic conductivity. The compressibility of fly ash reduces with alkaline solution but increases with acidic solutions. While alkaline or neutral inorganic solutions do not affect the hydraulic conductivity of fly ash, the addition of dilute acid increases the hydraulic conductivity. Addition of bentonite improves the geotechnical properties of fly ash such as cation exchange capacity, shrinkage and volume change behavior, etc. Fly ash-bentonite mixtures possess low shrinkage and hence do not crack. Compacted fly ash-bentonite mixtures undergo very little volume changes under various stress conditions. The hydraulic conductivity of fly ash is reduced after amendment with bentonite. Though the unconfined compressive strength of the mixture is lower than that of fly ash alone, the fly ash-bentonite mixture still possesses good strength. The compressibility of fly ash bentonite mixtures are lower with different pore fluids studied than with water. The hydraulic conductivity of fly ash-bentonite mixtures are slightly higher in different pore fluids studied than with water.  相似文献   

4.
Compacted clay barriers (liner and cap) are one of the most important components of municipal waste landfills. On-site soils are generally used to construct the clay barriers as long as they can be compacted to standard specifications, including hydraulic conductivity. Wherever the available on-site soils are not suitable to be used for constructing clay barriers, soils amended with bentonite are commonly used. This article presents the results of an experimental study conducted on compacted clay-bentonite mixtures to develop data on the effects of bentonite on engineering properties of compacted clay-bentonite mixtures. Clay-bentonite mixtures with bentonite contents of up to 7% were tested to determine consistency using Atterberg limits, moisture-density relationships using standard Proctor compaction tests, shear strength using unconfined compression tests, hydraulic conductivity using triaxial flexible-wall hydraulic conductivity tests, and consolidation properties using one-dimensional consolidation tests. Unconfined compression tests were also performed with 11% bentonite content. The laboratory test results indicated that liquid limit, plastic limit, and plasticity index increased linearly with increased amount of bentonite. The addition of bentonite resulted in decreased maximum dry unit weight but the optimum moisture content increased slightly. Unconfined compression strength of compacted clay-bentonite mixtures increased linearly with an increase in the amount of bentonite. Hydraulic conductivity of compacted clay-bentonite mixtures decreased nonlinearly with increased amount of bentonite, but a linear relationship was observed between logarithm of hydraulic conductivity and bentonite content. The compression index increased slightly from 0 to 3% bentonite content but increased nonlinearly beyond 3% bentonite content, whereas the swelling index of clay-bentonite mixtures has been observed to increase approximately linearly with increase in the amount of bentonite.  相似文献   

5.
Currently, there is renewed interest in the agricultural utilization of coal combustion byproducts. Field sites where high rates (112 Mg ha–1) of high gypsum coal combustion spent bed ashes were surface applied in 1980 within fruit tree orchard rows were identified and sampled with depth. The objective of this study was to examine the effects on long-term exposure/leaching of these materials on soil profile chemical properties. When applied, the material had an aqueous pH of 12.5 and consisted of about 52% calcium sulfate, 33% calcium oxide and 15% coal ash residues. Eleven years after ash application, soil pH is significantly higher in the top 66 cm of the treated sites compared to unamended sites. This has been accompanied by increases in extractable and total calcium and total boron and sulfur with a concomitant reduction in extractable magnesium. Remaining pieces of the applied spent bed material are composed primarily of calcite and quartz with some gypsum associated with large pieces.  相似文献   

6.
Geotechnical liners are widely used to contain leachate generated within landfills and minimize the risk of sub-surface and underground water contamination. In this study, an attempt has been made to utilize locally available soil red earth as liner material. The collected red earth contains mostly quartz and kaolinitic minerals. Studies have shown that bentonite content higher than 20% by weight is not usually required. This study aims to assess the red earth with 20% by weight of bentonite as liner material. Further, the studies are being carried out to improve the amended material by stabilizing the mixture with 1% by weight of lime. The relative merits of these materials under different physico-chemical environments are studied. The assessment of the liner material is based on their basic and geotechnical properties. The studies reveal that the geotechnical properties of red earth with 20% by weight bentonite stabilized with 1% by weight of lime enhanced, particularly after curing for sufficient period. The pore fluids such as HCl and CCl 4 increased volume change. The hydraulic conductivity of soils, which increased on treating with lime initially, decreased with curing. However, the hydraulic conductivity of stabilized soil increased in the presence of HCl and CCl 4 . The strength of stabilized soil is affected with the fluids NaCl and HCl solutions.  相似文献   

7.
This article presents the results of an experimental activity aimed at investigating the technical feasibility and the environmental performance of using municipal solid waste incineration bottom ash to produce glass frit for ceramic glaze (glaze frit). The process includes an industrial pretreatment of bottom ash that renders the material suitable for use in glaze frit production and allows recovery of aluminum and iron. The environmental performance of this treatment option is assessed with the life cycle assessment (LCA) methodology. The goal of the LCA study is to assess and compare the environmental impacts of two scenarios of end of life of bottom ash from municipal solid waste incineration (MSWI): landfill disposal (conventional scenario) and bottom ash recovery for glaze frit production (innovative scenario). The main results of the laboratory tests, industrial simulations, and LCA study are presented and discussed, and the environmental advantages of recycling versus landfill disposal are highlighted.  相似文献   

8.
The use of sand-bentonite mixtures as liner materials for waste disposal is very common. In the laboratory, this study investigated hydraulic conductivities of such mixtures at different hydraulic pressure (hydraulic gradient), dry unit weights, and bentonite contents. The bentonite content and the dry unit weight of the samples were both important factors, significantly affecting the hydraulic conductivity of the liner material. A bentonite content of 5% was found to be sufficient in reaching a hydraulic conductivity under 10?9 m/s, when the liner material was compacted under near optimum moisture content. Nevertheless, hydraulic conductivity was found to increase with hydraulic pressures, especially for the 5% bentonite mixtures subjected to pressure above 40 kPa, suggesting some degree of internal erosion (washing out of particles).

Therefore, this paper discuses the influence of internal erosion of the mixtures under a given hydraulic gradient, on the final value of k. The internal erosion of the tested mixtures was found to be influenced mainly by porosity, which can be reduced by properly selecting the sand particle size distribution and the bentonite percentage. Furthermore, this study proposed an empirical expression to predict the risk of internal erosion in the sand-bentonite mixtures, and therefore of k being higher than planned. This expression can be used for designing bentonite content and compaction to achieve very low permeability.  相似文献   


9.
张海涛  王如松  胡聃  张云 《生态学报》2011,31(19):5638-5645
工业固废的大量堆积产生多种环境危害,工业固废的资源化利用能够节约资源和缓解环境压力。建筑行业是能源消耗和碳排放的主要部门之一,其中建筑材料生产阶段的能耗和碳排放占有重要的地位。粉煤灰、煤矸石是常见的工业固体废物,尤其是在以煤炭为主要能源的地区。粉煤灰、煤矸石资源化利用的途径之一是用于制造新型墙体砖。本文以煤炭资源型城市淮北市的新型墙体砖(粉煤灰砌块、煤矸石砖)和传统墙体砖(粘土砖、粘土多孔砖)为案例,对墙体砖生产过程的生态效率和碳排放进行分析和比较。在淮北市墙体材料行业碳排放不增加的前提下,以最优生态效率为目标,建立线性规划模型,对淮北市4种主要墙体材料的产量进行规划。分析结果表明:新型墙体材料的生态效率高于传统墙体材料;煤矸石砖生产过程的碳排放系数高于传统墙体砖;粉煤灰砌块生产过程的碳排放系数介于粘土砖和粘土多孔砖之间。在淮北市墙体材料行业碳排放不增加的前提下,与现有的产量相比,淮北市应禁止粘土砖的生产,适当减少粘土多孔砖的产量,适当增加粉煤灰砌块和煤矸石砖的产量,以达到最优生态效率。在最优生态效率的情况下,淮北市新型墙体材料煤矸石砖对煤矸石工业固废的利用率将由目前的15.8%增加到25.2%。  相似文献   

10.
Background, aim, and scope  Beneficial use of coal combustion products (CCPs) in industrial or construction operations has the potential to minimize environmental and human health impacts that would otherwise be associated with disposal of CCPs in the life cycle of coal used for electricity generation. To assess opportunities for reducing impacts associated with four CCP materials considered in this study, fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) material, this paper reports results of expanding a life cycle inventory of raw material and emissions (part 1 of this series of papers) by performing life cycle impact assessment on five scenarios of CCP management. Materials and methods  SimaPro 5.1 software (PRé Consultants) was used to calculate comparative environmental impacts of all scenarios using CML2001 and Environmental Design of Industrial Products 1997 midpoint impact assessment methods and Heirarchist and Individualist levels of the Eco-indicator 99 end point method. Trends were compared for global and local environmental and human health impact categories of global warming, acidification, smog formation, human toxicity, and ecotoxicity. Results  In each impact category, beneficial use of fly ash, bottom ash, and FGD material resulted in a reduced impact compared to disposal of these materials. The extent to which beneficial use reduced impacts depended on several factors, including the impact category in consideration, the magnitude of potentially avoided impacts associated with producing raw materials that CCPs replace, and the potential impact of CCP disposal methods. Global warming impacts were reduced by the substitution of fly ash for Portland cement in concrete production, as production of Portland cement generates large quantities of CO2. However, for categories of global warming, smog formation, and acidification, impact reductions from CCP beneficial use are small, less than 6%, as these impacts were attributable, in greater part, to upstream processes of coal mining, transportation, and combustion. Human toxicity and ecotoxicity categories showed larger but more varied reductions, from 0% to 50%, caused by diverting CCPs from landfills and surface impoundments. Discussion  When comparing beneficial use scenarios, the four impact assessment methods used showed similar trends in categories of global warming, acidification, and smog formation. However, results diverged for human toxicity and ecotoxicity categories due to the lack of consensus among methods in classification and characterization of impacts from heavy metal release. Similarly, when assessing sensitivity of these results to changes in assumptions or system boundaries, human toxicity and ecotoxicity categories were most susceptible to change, while other impact categories had more robust results. Conclusions  Impact assessment results showed that beneficial use of CCPs presented opportunities for reduced environmental impacts in the life cycle of coal combusted for electricity generation, as compared to the baseline scenario of 100% CCP disposal, although the impact reductions varied depending on the CCPs used, the ultimate beneficial use, and the impact category in consideration. Recommendations and perspectives  As regulators and electric utilities increasingly consider viability and economics of the use of CCPs in various applications, this study provides a first-basis study of selected beneficial use alternatives. With these initial results, future studies should be directed towards beneficial uses that promise significant economic and environmental savings, such as use of fly ash in concrete, to quantify the currently unknown risk of these applications.  相似文献   

11.
Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosum (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel, were selected on the basis of their abundance in coal ash and toxicity potential for the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.  相似文献   

12.
Incineration of municipal solid waste as an alternative to its disposal in landfills has advantages such as volume reduction and generation of energy. However, both air emissions and the residual ash may pose environmental and human health hazards. The Ames mutagenicity assay was used to determine the mutagenicity of fly and bottom ash from two incinerators over time. This assay is an alternative to costly and time-consuming chemical analyses and is more realistic for the assessment of the best disposition of the ash i.e. whether it could pose a risk to handlers of the ash, whether it can be used in cement or as a fertilizer or whether it should be relegated to a landfill. The mutagenic potency of fly and bottom ash on a per g weight basis of material is similar. Furthermore, the variability over time in mutagenicity indicates that constant monitoring of incineration products and byproducts is essential.  相似文献   

13.
The leachability of metals from fly ash produced by a coal‐fired electric plant and a municipal waste incinerator under acidic conditions was experimentally investigated. The results of these column‐leaching experiments show that a decrease in the pH of the leachant favors the extraction of metal ions from solid particles of both coal combustion fly ash and municipal waste incinerator fly ash. The significant increase in the extraction of cadmium, chromium, zinc, lead, mercury, and silver ions from the ash is attributed to the instability of the mineral phases that contain these metals under acidic conditions.  相似文献   

14.
Coal Tar‐Containing Asphalt Resource or Hazardous Waste?   总被引:1,自引:0,他引:1  
Abstract: Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.  相似文献   

15.
大柳塔长焰煤中灰分和无机矿物对生物产气的影响   总被引:1,自引:1,他引:0  
【目的】以不同密度等级大柳塔长焰煤作为产气底物,前期驯化培养厌氧菌群进行生物模拟产气实验,研究不同密度等级煤中的灰分和无机矿物对生物产气的影响。【方法】利用小浮沉将大柳塔长焰煤分成不同密度等级的煤样,采用工业分析、XRD、XRF分析小浮沉处理得到煤样的理化性质,利用这些煤样进行生物产气模拟实验,以甲烷产量作为评价指标,分析不同密度等级煤样中灰分对产气的影响。最后,通过添加几种标准矿物方式比较了煤中无机矿物对生物产气的可能影响。【结果】不同密度等级煤样中灰分对产气量存在一般显著影响(P=0.035),且灰分与甲烷含量呈负相关关系,其灰分中的无机矿物如高岭土、菱铁矿、氧化亚铁镁等的积累对产气有抑制作用。不同矿物配比产气实验证实低含量的粘土矿物促进甲烷的生成,高含量的粘土矿物抑制产气。【结论】不同密度等级煤中的灰分对生物产气存在一般显著的影响,高灰分煤的产气量低,而低灰分煤的产气量高。  相似文献   

16.
Embodiment of biomass combustion technologies in the Cretan energy system will play an important role and will contribute to the local development. The main biomass fuels of Crete are the agricultural residues olive kernel and olive tree wood. Future applications of these biofuels may create, among others, operational problems related to ash effects. In this regard, the thermal behavior of the ashes during lab-scale fluidized bed combustion tests was examined, in terms of slagging/fouling and agglomeration of bed material. Control methodologies for mitigating ash problems were applied, such as leaching the raw fuels with water and using different mineral additives during combustion. The ashes and the bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined. The results showed that fly ashes were rich in Ca, Si and Fe minerals and contained substantial amounts of alkali, falling within the range of "certain or probable slagging/fouling". Leaching of the raw fuels with water resulted in a significant reduction of the problematic elements K, Na, Cl and S in the fly ashes. The use of fuel additives decreased the concentrations of alkali and iron minerals in the fly ashes. With clay additives calcium compounds were enriched in the bottom ash, while with carbonate additives they were enriched in the fly ash. Fuel additives or water leaching reduced the slagging/fouling potential due to alkali. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed.  相似文献   

17.
An experiment was done to determine the efficacy of waste bottom ash as an effective microbial carrier. Bottom ash found to be a suitable microbial carrier. The average of viable cells of Paenibacillus polymyxa GS01 (as a test biocontrol agent) in bottom ash samples was about 108 cfu/10±2 mg. The surface of bottom ash coated with 5% PVA w/v was most effective for improvement of cell viability. TSB medium containing 50 mg/L of MnSO4·H2O was the best for spore production of P. polymyxa GS01. Thus waste bottom ash coating with 5% PVA is likely to be suitable for use as a microbial carrier.  相似文献   

18.
The use of fly ash as an amendment for strip mine soils was studied under field conditions. Three plant species—Agrostis tenuis var. Highlander,Festuca arundinacea, andLespedeza cuneata—were grown in strip mine plots. Half of the plots were treated with an equivalent of 70 metric tons per hectare of coal fly ash and half were untreated. Biomass production ranged from 5 to 30 times higher in fly ash treated plots compared to untreated plots. No toxic effects to the plants were observed.  相似文献   

19.

Microbiological characteristics of bentonite deposits were investigated as a natural analogue of microbial behavior in the buffer material for geological disposal of radioactive waste. Distributions of microorganisms in bentonite were examined at four sites in two different bentonite deposits in Japan. The sites included pond bottom, wetland, and wet mine gallery environments where bentonite layers have been left undisturbed for 2 to 30 years. Excavation was performed without using drilling water and the center parts of the cores were used for microbial examination. Plate counts with R2A medium of aerobic and anaerobic bacteria at the drilling mouth ranged from 105 to 107/g DW (dry weight) and from 103 to 106/g DW, respectively. The CFDA-AM (Carboxyfluorescein diacetate acetoxymethyl ester) cell counts ranged from 106 to 109/g DW. Bacterial numbers in the bentonite layers declined with distance from the drilling mouth; both aerobes and anaerobes were less than 102/g DW and CFDA-AM cell counts less than 106/g DW for core samples taken from approximately 1 m depth, except at the pond bottom. These results suggest that microbial activity in natural bentonite is lower than in typical soils and aquatic sediments and does not spread easily.  相似文献   

20.
Packs of autumn-shed maple leaves were placed at coal ash effluent-exposed and reference sites in streams on December 5, 1977 and removed after 27 and 96 days. Leaf surface area (cm2/leaf) and disc weight (ash-free dry wt/15 mm disc) were greater at the effluent-exposed site than at the reference site after 96 days (p < .001). ATP content of leaves from the reference stream quadrupled between 27 and 96 days while ATP content of effluent-exposed leaves remained low. Macroinvertebrates colonized the leaf packs in the reference site but were not found on or in effluent-exposed packs. We concluded that leaf processing beyond the leaching of soluble organics did not occur in the effluent-exposed packs owing to reduced colonization and decomposition by fungi. Since stream invertebrates prefer decomposed leaf material and animals grow faster on leaves colonized by microbes, the ash effuent appears to indirectly affect macroinvertebrates by interfering with leaf decomposition and thus reducing the quality of their food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号