首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-tiered environmental risk assessment of formaldehyde determined the possibility of harmful effects on organisms in certain environmental compartments in Canada. A review of the relevant information indicates that biota are exposed to formaldehyde primarily in air and, to a lesser extent, in water. Worst-case scenarios predict that the estimated exposure values likely to be encountered in Canada for water and air are not expected to exceed estimated no-effects values. Therefore, the environmental risks associated with concentrations of formaldehyde likely to be found in Canada are low.  相似文献   

2.
Ecological risk assessment (ERA) is a process that evaluates the potential for adverse ecological effects occurring as a result of exposure to contaminants or other stressors. ERA begins with hazard identification/problem formulation, progresses to effects and exposure assessment, and finishes with risk characterization (an estimate of the incidence and severity of any adverse effects likely to occur). Risk management initially sets the boundaries of the ERA and then uses its results for decision-making. Key information required for an ERA includes: the emissions, pathways and rates of movement of contaminants in the environment; and, information on the relationship between contaminant concentrations and the incidence and (or) severity of adverse effects. Because of specific properties and characteristics of metals in general and of certain metals in particular, a generalized ERA process applicable to organic substances is inappropriate for metals. First, metals are naturally occurring and can arise, sometimes in very high concentrations, from non-anthropogenic sources; organisms can and do adapt to a wide range of metal concentrations. Second, certain metals (e.g., copper, zinc) are essential for biotic health, which means there is an effect threshold for both deficiency and excess, and that standard body burden indices such as bioaccumulation factors (BCFs) can be misleading. Third, metals can occur in the environment in a variety of forms that are more or less available to biota but adverse biological effects can only occur if metals are or may become bioavailable. Fourth, whereas the bioavailability and hence the possibility of toxicity of persistent organic substances are mainly dependent on their intrinsic properties (i.e., lipophilicity), those of metals are generally controlled by external environmental conditions. Examples include pH and ligands, which affect the metal speciation and coexisting cations (e.g., H+, Ca2+) which compete with the metal ions. ERAs involving metals must include the above four major considerations; other considerations vary depending on whether the ERA is for a site, a region, or is global in scope.  相似文献   

3.
Interstudy variation among bioavailability studies is a primary deterrent to a universal methodology to assess metals bioavailability to soil-dwelling organisms and is largely the result of specific experimental conditions unique to independent studies. Accordingly, two datasets were established from relevant literature; one includes data from studies related to bioaccumulation (total obs = 520), while the other contains data from studies related to toxicity (total obs = 1264). Experimental factors that affected toxicity and bioaccumulation independent of the effect of soil chemical/physical properties were statistically apportioned from the variation attributed to soil chemical/physical properties for both datasets using a linear mixed model. Residual bioaccumulation data were then used to develop a non-parametric regression tree whereby bootstrap and cross-validation techniques were used to internally validate the resulting decision rule. A similar approach was employed with the toxicity dataset as an independent external validation. A validated decision rule is presented as a quantitative assessment tool that characterizes typical aerobic soils in terms of their potential to sequester common divalent cationic metal contaminants and mitigate their bioavailability to soil-dwelling biota.  相似文献   

4.
A probabilistic ecological risk assessment of phenol was undertaken to determine the risks posed to biota as a result of phenol release to the Canadian environment. A three-tiered approach was used to estimate risks, with progressively more realistic assumptions being applied at each tier. In Canada, the major sources of phenol are municipal wastewater treatment plants, pulp, paper and wood products mills, steel and metal products facilities and refineries. Thus, the highest exposures will occur in receiving waters near these point sources, primarily due to the short half-life of phenol in the aquatic environment. Sensitive aquatic organisms include salmonids (e.g., rainbow trout Oncorhynchus mykiss) and amphibians (e.g., leopard frog Rana pipiens). The results of the risk assessment indicate that species are exposed to elevated levels of phenol near point sources, but these levels represent only a minor risk to aquatic biota.  相似文献   

5.
Ecological risk assessment (ERA) of inorganic metals and metalloids (metals) must be specific to these substances and cannot be generic because most metals are naturally occurring, some are essential, speciation affects bioavailability, and bioavailability is determined by both external environmental conditions and organism physiological/biological characteristics. Key information required for ERA of metals includes: emissions, pathways, and movements in the environment (Do metals accumulate in biota above background concentrations?); the relationship between internal dose and/or external concentration (Are these metals bioreactive?); and the incidence and severity of any effects (Are bioreactive metals likely to result in adverse or, in the case of essential metals, beneficial effects?) — ground-truthed in contaminated areas by field observations. Specific requirements for metals ERA are delineated for each ERA component (Hazard Identification, Exposure Analysis, Effects Analysis, Risk Characterization), updating Chapman and Wang (2000). In addition, key specific information required for ERA is delineated by major information category (conceptual diagrams, bioavailability, predicted environmental concentration [PEC], predicted no effect concentration [PNEC], tolerance, application [uncertainty] factors, risk characterization) relative to three different tiered, iterative levels of ERA: Problem Formulation, Screening Level ERA (SLERA), and Detailed Level ERA (DLERA). Although data gaps remain, a great deal of progress has been made in the last three years, forming the basis for substantial improvements to ERA for metals.  相似文献   

6.
Hexachlorobutadiene (HCBD) has never been commercially produced in Canada and was imported in the past for use as a solvent. Anthropogenic activity is linked with the entry of this substance into the environment. While current Canadian sources of HCBD involve low-level releases, potentially they can be numerous. Until recently, the most significant point source of HCBD in Canada appeared to be the Cole Drain, which discharges into the St. Clair River at Sarnia, Ontario, and includes outfalls from an industrial landfill and a few industrial companies. HCBD has been detected in Canadian surface waters, sediments, aquatic organisms and, occasionally, air. Considering the properties of the substance, including its persistence and bioaccumulation characteristics, the environmental risk assessment of HCBD was focused on the aquatic environment. The results of a conservative assessment suggest that there is a risk of harmful effects for benthic organisms exposed to sediments contaminated by HCBD in the most contaminated part of the St. Clair River.  相似文献   

7.
Mass estimates of phytoaccumulated trace metal contaminants and transfers to soils are necessary to properly evaluate the impact of historic and continued anthropogenic metal deposition to northern forest ecosystems. An investigation of Cu, Ni, Pb, and Zn mass balances in plant communities subject to metal contamination from smelter emissions in Canada, found that accumulation of metals differed significantly among plant vegetation compartments (foliage, fine roots, bark, trunk, and branches). Analysis of plant community biological accumulation factors (BAFs), calculated using total soil metal and free soil metal ion (Me2+) found that free soil metal BAFs were more similar among locations than total soil metal BAFs, but that disparity still existed. Fine roots were found to dominate annual vegetation transfer of Cu, Ni, and Pb to soils, relative to foliage; fine root mortality played a smaller role than foliage for Zn plant-soil transfer. Plant-associated metal inputs were found to rival or exceed current estimates of atmospheric metal deposition, suggesting that potential benefits of future reductions in emissions to forests need to be evaluated within the context of phytocycling of metals already present.  相似文献   

8.
Inorganic chloramines are formed when chlorine and ammonia are combined in water. These substances are frequently used as a secondary disinfectant for drinking water and are by-products of processes involving the disinfection of wastewaters and the control of biological fouling in cooling water systems. For chloraminate drinking water, the total residual chlorine (TRC) concentration may be almost completely due to monochloramine. Based on 1995 and 1996 survey data, the most significant and prevalent TRC loading to the Canadian environment is from municipal wastewater releases. Drinking water releases are the next most important source of chloramine entry into the Canadian environment, while TRC releases from other sources, such as cooling water, zebra mussel control practices and industrial wastewater, are much less important. A probabilistic water quality model was used to model two wastewater discharges and a cooling water discharge to different freshwater systems. The resulting exposure distributions were then compared with three incipient lethality endpoints, i.e., 50% mortality to the invertebrate Ceriodaphnia dubia and 50% and 20% mortality to juvenile chinook salmon (Oncorhynchus tshawytscha). For each discharge scenario studied, there were moderate to high probabilities of significant adverse effects on aquatic life up to 1.9?km from the effluent sources.  相似文献   

9.
Sediment metal concentrations in embayments of Sydney Harbour, acquired from the literature and from samples collected for this study, were used to generate contaminant probability density distributions using AQUARISK. The sediment metal concentrations often exceeded Australia's interim sediment quality guidelines. Similarly, estuarine spiked sediment toxicity test literature provided adverse biotic effects concentration data to generate species sensitivity distributions using AQUARISK. Although the harbor is subject to other inorganic and organic contamination, we have used sediment metals to demonstrate an approach for ecological risk mapping and environmental management prioritization. Sufficient spiked sediment toxicity test data were found for only three metals—Cd, Cu, and Zn—and some tests were likely to overestimate toxicity. The estimates of the hazardous concentration to 5% of species (the 50th percentile of the 95% species protection level) were 5, 12, and 40 mg/kg DW of total sediment metal for Cd, Cu, and Zn, respectively. These values were generally low when compared with the interim sediment quality guidelines due to the overestimation of toxic effects in the literature data. The parameters for the species sensitivity distributions have been combined with the measured sediment metal concentrations in Homebush Bay to generate risk maps of the estimated species impact for each metal as well as for all three metals collectively assuming proportional additivity. This has demonstrated the utility of comparing contaminants on a consistent scale—ecological risk.  相似文献   

10.
The chemical, mineralogical, and microbial properties of the rhizosphere of a range of forested ecosystems were studied to identify the key processes controlling the distribution and fate of trace metals at the soil–root interface. The results of our research indicate that: (1) the rhizosphere is a soil microenvironment where properties (e.g., pH, organic matter, microbes) and processes (nutrient and water absorption, exudation) differ markedly from those of the adjacent bulk soil; (2) the rhizosphere is a corrosive medium where the weathering and neoformation of soil solid phases are enhanced; (3) the concentrations of solid-phase and water-soluble trace metals like Cd, Cu, Ni, Pb, and Zn are generally higher in the rhizosphere as shown by both macroscopic and microscopic approaches; (4) a larger fraction of water-soluble metals is complexed by dissolved organic substances in the rhizosphere; and (5) soil microorganisms play, either directly or indirectly, a distinct role on metal speciation, in particular Cu and Zn, in the rhizosphere. These results improve our capacity to estimate metal speciation and bioavailability at the soil–root interface. Furthermore, the research emphasizes the crucial physical position occupied by the rhizosphere with respect to the process of elemental uptake by plants and its key functional role in the transfer of trace metals along the food chain. We conclude that the properties and processes of the rhizosphere should be viewed as key components of assessments of the ecological risks associated with the presence of trace metals in soils.  相似文献   

11.
This study investigated the dissolved trace metal contamination levels of Zn, Sr, B, Al, Ba, Fe, Mn, Li, V, Be, Cd, Cr, Cu, Mo, Ni, Se, and Pb in 23 surface waters of the Yellow River Delta (YRD) in China. Coefficients of variation with 66–260% reflected large spatial variations of concentrations of metals. Compared to drinking water guidelines established by the World Health Organization and the U.S. Environmental Protection Agency, the primary trace metal pollution components (Al, B, V, and Zn) were above drinking water standard levels by 82.6%, 47.8%, 52.2%, and 52.2%, respectively. Preliminary risk assessments were determined via the Hazard Quotient (HQ) to evaluate the human health risk of these metals. HQingestion of V indicated potential deleterious health effects for residents. Hierarchical cluster results revealed that clusters 1, 2, and 3 were primarily affected by pollution from industrial and domestic activities, natural and agriculture activities, and oil fields, respectively. Principal component analysis results indicated Fe, Mn, Al, and Ba were controlled by natural sources, whereas anthropogenic activities led to high pollution levels of Al, B, V, Zn, and Sr.  相似文献   

12.
Distribution and magnitude of arsenic and metals in surface sediments collected from the coastal and estuarine areas of the southern Bohai Sea, China, were investigated. Sediments from the estuarine and coastal areas of the Jie and Xiaoqing Rivers contained highest concentrations of arsenic, cadmium, copper, mercury, and zinc. Mean concentrations of Cu, Zn, Cr, Pb, and Cd were higher than background concentrations determined for the areas. The magnitude of both enrichment factors (EF) and geoaccumulation indices (Igeo) suggested that pollution with As and metals was occurring along estuarine and coastal areas of the southern Bohai Sea. Risk analysis also suggested that concentrations of As and metals were sufficiently elevated as to cause adverse biological effects in the study area. According to the ecological risk index (RI) values, the upstream of the Jie River has a very high ecological risk for the waterbody. The data provided in this study are considered crucial for controlling and remediation of As and metals’ pollution of the southern Bohai Sea.  相似文献   

13.
The World Health Organization's International Programme on Chemical Safety (IPCS), the Organization for Economic Cooperation and Development (OECD), and the U.S. Environmental Protection Agency have developed a collaborative partnership to foster integration of assessment approaches for human health and ecological risks. This paper presents the framework developed by that group. Integration provides coherent expressions of assessment results, incorporates the interdependence of humans and the environment, uses sentinel organisms, and improves the efficiency and quality of assessments relative to independent human health and ecological risk assessments. The paper describes how integration can occur within each component of risk assessment, and communicates the benefits of integration at each point. The goal of this effort is to promote the use of this internationally accepted guidance as a basis for harmonization of risk assessment.  相似文献   

14.
15.
Ecological risk assessment and management have grown from a long history of assessment and management activities aimed at improving the everyday lives of humans. The background against which ecological risk assessment and management has developed is discussed and recent trends in the development of risk assessment and management frameworks documented. Seven frameworks from five different countries are examined. All maintain an important role for science, suggest adaptive approaches to decision-making and have well-defined analytical steps. Differences in approaches toward the separation of policy and science, the preference for management over assessment, the inclusion of stakeholders, the iterative nature of the analytical cycle, the use of decision criteria and economic information suggest considerable evolution in framework design over time. Despite the changes, no consensus on the design of a framework is apparent and work remains to be done on refining an integrative framework that effectively incorporates both policy and science considerations for environmental management purposes.  相似文献   

16.
Ecological risk assessment (ERA) methodologies must be continually improved so that resource managers, activity proponents, and stakeholders can better manage the environmental impacts of human activities. One of the largest challenges facing ERA methodologies and approaches is to develop the ability to encompass cumulative and far-field effects of human activities. It is argued here that the ERAs of industrial aquaculture activities have been an example of where ERA practitioners and researchers have responded to the challenge of managing the cumulative risks of a new and rapidly growing industry by developing innovative ERA approaches that can be applied elsewhere.  相似文献   

17.
A major watershed restoration effort is underway in south Florida, yet there are significant gaps in scientific information on exposure and risks of contaminants to its natural resources. We conducted a two-tier aquatic screening-level ecological risk assessment for metals that were monitored in sediment at 32 sampling sites in south Florida freshwater canals from 1990–2002. For tier 1, the chemicals (or metals) of potential ecological concern (COPECs) were identified as arsenic, cadmium, chromium, copper, lead, nickel and zinc based on their exceedences of Florida sediment quality guidelines at 10 sites. For tier 2, we used a probabilistic risk assessment method to compare distributions of predicted pore water exposure concentrations of seven metal COPECs with distributions of species response data from laboratory toxicity tests to quantify the likelihood of risk. The overlap of pore water concentrations (90th centile for exposure) for metal COPECs and the effects distributions for arthropods (10th centile of LC50s) and all species (10th centile of chronic NOECs) were used as a measure of potential acute and chronic risks, respectively. Arsenic (25%) in the Holey Land tracts, in Broward County north of Everglades National Park (ENP), and chromium (25%) in the C-111 freshwater system, at the east boundary of ENP, were the most frequently detected COPECs in sediment. Antimony (6%), zinc (6%) and lead (5%) were the least frequently detected COPECs in sediment. The 90th centile concentrations for bulk sediment were highest for zinc (at S-178) and lead (at S-176) in the C-111system. The 90th centile concentration for pore water exposure was highest for arsenic in the Holey Land tracts and lowest for cadmium and chromium. The estimated acute 10th centile concentration for effects was lowest for copper and arthropods. The probabilities of pore water exposures of copper exceeding the estimated acute 10th centile concentration from the species sensitivity distributions (SSD) of acute toxicity data (for arthropods) were 57 and 100% for copper at S-177 and S-178 in the C-111 system, respectively. The probability of pore water exposures of copper exceeding the estimated NOEC 10th centile concentration from the SSD of chronic toxicity data (for all species) was 93 and 100% for copper at S-177 and S-178, respectively. Uncertainties in exposure and effects analysis and risk characterization are identified and discussed. The study presents a straightforward approach to estimate exposure and potential risks of metals detected in sediment from south Florida canals.  相似文献   

18.
Manganese mining activities in the Drama district, northern Greece, have resulted in a legacy of abandoned mine wastes at the “25 km Mn-mine” site. Current research was focused on the western Drama plain (WDP), constituting the recipient of the effluents from Xiropotamos stream, which passes through the “25 km Mn-mine” place. A total of 148 top soil samples were collected and their heavy metals (HMs) concentrations (Mn, Pb, Zn, Cu, Cd, and As) were determined using inductively coupled plasma mass spectrometry. Enrichment factor (EF), geoaccumulation index (Igeo), and pollution load index (PLI) were calculated as an effort to assess metal accumulation, distribution, and pollution status of the soils due to the former mining activity. The overall potential ecological risk of HMs to the environment was also evaluated using the potential toxicity response index (RI). Results showed that peak values of the elements (13 wt% for Mn, 0.2 wt% for Pb, 0.2 wt% for Zn, 0.1 wt% for As, 153 mg/kg for Cu, and 27.5 mg/kg for Cd) were found in soils from sites close to and along both sides of the Xiropotamos stream. In this sector of WDP, values of EF, Igeo, and PLI classify the soils as moderately to highly polluted with Mn, Pb, Zn, Cd, and As. Based on RI values, soils in this part of WDP display considerable to very great potential ecological risk and, therefore, a remediation has to be applied. The main cause of soil contamination is considered the Xiropotamos downstream transfer and dispersion of Mn mine wastes via flooding episodes.  相似文献   

19.
The objective of this study was to identify subareas inside and near an Atlantic Rain Forest reserve, the Parque Estadual Turístico do Alto Ribeira (PETAR), most likely to be affected by land use in the vicinity of the area. In addition, the study aimed to compare risks per stressor source (agriculture, human settlements and mining) to both epigean (surface) and hypogean (subterranean) aquatic fauna. The methodological approach included the relative vulnerability of endpoints to the stressors (pesticides, metals, nutrients, and particles) and ranking of stressor sources and habitats (epigean and hypogean streams) based on their relative distribution in 14 subareas within the catchment areas of the main rivers that cross PETAR: Pilões, Betari and Iporanga. Four subareas presented high risk for both epigean and hypogean fauna. Three of those areas were located inside the Betari catchment area, where most of the settlements and abandoned lead mines are located. The fourth area was situated in the headwaters of the Pilões River, where agricultural activities are intense. Agriculture and human settlements were the activities most likely to cause impacts on aquatic ecosystems. Uses of risk assessment results include management of the PETAR and communication to stakeholders by the Park Administration.  相似文献   

20.
Ecological models are useful tools for evaluating the ecological significance of observed or predicted effects of toxic chemicals on individual organisms. Current risk estimation approaches using hazard quotients for individual-level endpoints have limited utility for assessing risks at the population, ecosystem, and landscape levels, which are the most relevant indicators for environmental management. In this paper, we define different types of ecological models, summarize their input and output variables, and present examples of the role of some recommended models in chemical risk assessments. A variety of population and ecosystem models have been applied successfully to evaluate ecological risks, including population viability of endangered species, habitat fragmentation, and toxic chemical issues. In particular, population models are widely available, and their value in predicting dynamics of natural populations has been demonstrated. Although data are often limited on vital rates and doseresponse functions needed for ecological modeling, accurate prediction of ecological effects may not be needed for all assessments. Often, a comparative assessment of risk (e.g., relative to baseline or reference) is of primary interest. Ecological modeling is currently a valuable approach for addressing many chemical risk assessment issues, including screening-level evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号