首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial growth on hydrocarbons is common in nature and used in bioremediation of contaminated sites, whereas in fuel storage tanks this phenomenon can affect the stability of the fuel and the tank. The impact of microbial growth and produced metabolites on materials, which are used in the construction of storage tanks, were analyzed. In contrast to metal tank components, polymeric materials did not affect or were influenced by microorganisms. Zinc was highly corroded by microbial growth, most likely due to the formation of organic acids that were produced during microbial growth on hydrocarbons. A contaminated water phase in a storage tank of a heating system was simulated with a self‐constructed pump test bench. Microbial growth began in the water phase of the storage tank and microbes were distributed throughout the tank system, through water‐in‐oil microemulsions. No microbial growth was observed in oil that was previously contaminated, indicating that essential nutrients had been depleted. The identification and removal of these essential nutrients from fuels could minimize or prevent microbial contamination. The results are discussed with regard to developing recommendations for the design and operation of domestic heating oil storage tanks to lower the risk of technical failure due to microbial contamination.  相似文献   

2.
土壤微生物对重金属污染胁迫敏感,但在实际野外环境中,土壤微生物群落生态效应通常是污染胁迫和环境因素综合作用的结果。为探究重金属污染土壤中微生物群落生态效应发生变化的主控因素,本研究以湖南省某典型矿冶区周边不同土地利用类型土壤为研究对象,以土壤碳氮循环过程主要的微生物功能指标土壤微生物生物量碳(MBC)、基础呼吸(BR)、诱导呼吸(SIR)和硝化潜势(PNR)为生态效应终点,进行采样调查分析。结果表明: 土地利用类型对MBC、BR和SIR影响均不显著;研究区土壤微生物功能的主要影响因子包括CaCl2提取态Pb(CaCl2-Pb)含量与土壤有机质(SOM)含量。多元回归分析结果表明,在CaCl2-Pb含量为0.004~13.14 mg·kg-1及SOM含量为0.24%~4.34%的条件下,土壤CaCl2-Pb和SOM含量可以共同解释土壤中BR、SIR和PNR总变异的39.8%~58.3%;中等含量下(SOM在1.70%~2.36%,CaCl2-Pb在0.004~12.98 mg·kg-1),土壤CaCl2-Pb和SOM含量与BR、SIR和PNR的变化能够建立显著的暴露-效应关系,可以作为测定终点定量评价重金属污染对微生物群落功能的生态效应。  相似文献   

3.
In desert ecosystems, microbial activity and associated nutrient cycles are driven primarily by water availability and secondarily by nutrient availability. This is especially apparent in the extremely low productivity cold deserts of the McMurdo Dry Valleys, Antarctica. In this region, sediments near streams and lakes provide the seasonally wet conditions necessary for microbial activity and nutrient cycling and thus transfer energy to higher organisms. However, aside from a few studies of soil respiration, rates of microbial activity throughout the region remain unexplored. We measured extracellular enzyme activity potentials (alkaline phosphatase, leucine-aminopeptidase, beta-glucosidase, phenol oxidase, and peroxidase) in soils adjacent to lakes and streams, expecting activity to be primarily related to soil water content, as well as time of season and organic matter supply. Phosphatase and beta-glucosidase activities were higher in shoreline than upland soils; however, potential rates were not correlated with soil water content. Instead, soil organic matter, salinity, and pH were the best predictors of microbial activity. Microbial nutrient limitation metrics estimated from extracellular enzyme activity were correlated with pH and salinity and exhibited similar patterns to previously published trends in soil P and N content. Compared to other terrestrial ecosystems, organic matter specific rates for leucine-aminopeptidase and oxidative enzyme activities were high, typical of alkaline desert soils. Phosphatase activity was close to the global mean whereas beta-glucosidase activity was extremely low, which may reflect the lack of vascular plant derived organic matter in the Dry Valleys. In this cold desert ecosystem, water availability promotes microbial activity, and microbial nutrient cycling potentials are related to soil geochemistry. Author contributions:   LHZ performed research, analyzed data, and wrote the paper; RLS contributed new methods and wrote the paper; JEB conceived/designed study, performed research and analyzed data; MNG conceived/designed study and performed research; CTV conceived/designed study and performed research.  相似文献   

4.
Mercury (Hg) is a persistent soil pollutant that affects soil microbial activity. We monitored the changes in soil microbial biomass and activity of enzymes, including alkaline phosphatase, arylsulfatase, fluorescein diacetate (FDA) hydrolytic activity, and o-diphenol oxidase (o-DPO) in three soils contaminated with different concentrations of Hg. Increasing levels of Hg, from 0.5 to 10 μmol/g of dried soil, generally depressed microbial activity; however, the effects of Hg on soil microbial activity depended on soil type and composition, particularly organic matter content. o-DPO was less affected by Hg than the other three enzymes tested. Our results indicate that the analysis of microbial biomass content and soil-enzyme activities may be used to predict the soil quality contaminated with Hg.  相似文献   

5.
Biochar (a carbon-rich product from pyrolysis of organic materials) additions to agricultural soils have been shown to often result in neutral to positive influences on soil properties and processes; however, the only a limited number of studies have been conducted on active organic farming systems and of those, none have used multivariate analytical methods to examine the influence of biochar on soil microbial activity, nutrient cycling, and crop performance. In this study, biochar produced from local timber harvest residues on Waldron Island, WA was applied in factorial combination with a poultry litter based fertilizer to replicated plots on six organic farms that were all growing Kabocha squash (Cucurbita maxima) in the summer of 2016. A series of soil physicochemical and biochemical properties were examined after 5 months of biochar application; squash samples were evaluated for productivity and nutrient uptake. Factorial multivariate analysis of variance (MANOVA) revealed a significant influence of biochar on soil properties as well as a synergistic effect of biochar and poultry litter during a 5 month field trial. Principle component analysis (PCA) highlighted soil total C content, microbial biomass C, enzyme activities, bioavailable P, and phosphatase enzyme activity as the variables most influenced by biochar incorporation into surface mineral soil. Redundancy analysis (RDA) further indicated that better soil biochemical conditions, particularly soil enzyme activities and available P concentrations, were associated with higher crop productivity in biochar-treated plots. Overall, our study demonstrates that locally produced wood biochar, in addition to improving soil C storage, has the potential to significantly improve soil fertility and crop productivity in organic farming systems on sandy soils.  相似文献   

6.
7.
We evaluate the mid-term effects of two amendments and the establishment of R. officinalis on chemical and biochemical properties in a trace element contaminated soil by a mine spill and the possible use of this plant for stabilization purposes. The experiment was carried out using containers filled with trace element polluted soil, where four treatments were established: organic treatment (biosolid compost, OAR), inorganic treatment (sugar beet lime, IAR), control with plant (NAR) and control without plant (NA). Amendment addition and plant establishment contributed to restore soil chemical (pH, total organic carbon, and water soluble carbon) and biochemical properties (microbial biomass carbon and the enzymatic activities: aryl-sulphatase and protease). The presence of rosemary did not affect soluble (0.01 M CaCl2) Cd and Zn and decreased trace element EDTA extractability in amended soils. There were no negative effects found on plant growth and nutrient content on polluted soils (NAR, OAR, and IAR). Trace element contents were within normal levels in plants. Therefore, rosemary might be a reliable option for successful phytostablization of moderate trace element contaminated soils.  相似文献   

8.
The impact on the microbial community of long-term environmental exposure to metal and organic contamination was investigated. Twenty-four soil samples were collected along a transect dug in soils contaminated with road paint and paint solvents, mainly toluene. Chemical analysis along the transect revealed a range from high to low concentrations of metals (lead and chromium) and organic solvent compounds. Principal components analysis of microbial community structure based on denaturing gradient gel electrophoresis of the V3 region of the 16S rRNA gene and fatty acid methyl esters derived from phospholipids (phospholipid fatty acid analysis) showing samples with similar fingerprints also had similar contaminant concentrations. There was also a weak positive correlation between microbial biomass and the organic carbon concentration. Results indicated that microbial populations are present despite some extreme contaminant levels in this mixed-waste contaminated site. Nucleotide sequence determination of the 16S rRNA gene indicated the presence of phylogenetically diverse bacteria belonging to the α-, β-, γ-, and δ-Proteobacteria, the high and low G + C Gram-positive bacteria, green nonsulfur, OP8, and others that did not group within a described division. This indicates that soils contaminated with both heavy metals and hydrocarbons for several decades have undergone changes in community composition, but still contain a phylogenetically diverse group of bacteria (including novel phylotypes) that warrant further investigation.  相似文献   

9.
土壤微生物学特性对土壤健康的指示作用   总被引:70,自引:0,他引:70  
土壤健康是陆地生态系统可持续发展的基础。作者通过概述土壤微生物学特性(土壤微生物群落结构、土壤微生物生物量、土壤酶活性)与土壤质量的关系, 阐明了土壤微生物对土壤健康的生物指示功能。研究表明: 土壤中细菌、真菌和放线菌的组成及其所占比率在一定程度上反映了土壤的肥力水平: 在土壤性质和肥水条件较好的土壤中, 细菌所占比率较高。土壤微生物生物量与土壤有机质含量密切相关, 而且土壤微生物生物量碳与土壤有机碳的比值(Cmic : Corg)和土壤微生物代谢熵(qCO2)的变化在一定程度上反映了土壤有机碳的利用效率。一般情况下, 土壤酶活性高的土壤中, 土壤微生物生物量碳、氮含量也高。因此, 土壤微生物学特性可以反映土壤质量的变化, 并可用作评价土壤健康的生物指标。  相似文献   

10.
土壤氮素形态及含量具有重要的生态学研究意义,而土壤样品的储存对土壤氮素含量的准确测定有很大影响.为了选择合理的土壤样品储存方法,本研究以福建省建瓯市万木林保护区罗浮栲林土壤为研究对象,测定在不同温度(25、4和-20 ℃)、不同储存时间(0、7和30 d)下土壤铵态氮、硝态氮、总氮、可溶性有机氮、氨基酸氮含量和微生物生物量氮,以及冷冻后常温培养过程中的氮素含量.结果表明: 在7 d的储存时间内,除氨基酸氮以外,常温培养样品下其余的氮素含量均有所增加;与新鲜样品相比,冷藏、冷冻样品的所有氮素含量之间均无显著性差异,且氮素含量变化较常温培养下更加稳定.因低温储存样品有刺激氮矿化的效果,在30 d储存时间内,与新鲜样品相比,除可溶性有机氮外,冷藏、冷冻样品的所有氮素含量均显著升高;两种冷储存方法之间无显著差异.因此,新鲜样品带回实验室后应及时处理;如需要冷储藏,时间不要超过半个月.如果需要较长的储存时间,则需将样品放置于更低的温度(-40或-80 ℃).在对储存土壤样品进行培养试验之前,需要进行预培养处理.在预培养过程中,除硝态氮含量呈现先下降再迅速升高的趋势外,其余氮素均随着培养时间逐渐趋近于新鲜土壤样品含量,在培养一周左右恢复到与新鲜土壤样品氮含量最为接近的状态.结合已有研究,对野外取样和风干样品需要5~14 d的预培养,冷储存样品预培养时间不应少于一周.  相似文献   

11.
亚热带毛竹林土壤磷组分和微生物对施氮的响应   总被引:1,自引:0,他引:1  
磷(P)是植物和微生物生长的重要营养元素,亚热带地区土壤P有效性较低,且长期高氮(N)沉降可能会造成土壤P有效性进一步降低。本试验开展于戴云山毛竹林,分析了施N 3年对土壤的基本理化性质、P组分、微生物生物量和酸性磷酸单酯酶活性的影响。结果表明: 施N显著增加了土壤NO3--N含量,提高了土壤N有效性,但显著降低了易分解态有机磷占全磷的比例,且总有机碳与总有机P的比例>200。土壤微生物生物量碳、微生物生物量磷、酸性磷酸单酯酶活性、微生物生物量碳/微生物生物量磷和微生物生物量氮/微生物生物量磷随施N量的增加而增加。此外,易分解态有机磷占总磷比例与微生物生物量磷呈显著负相关关系。因此,施N加剧了土壤P有效性限制,提高了微生物对P的需求。  相似文献   

12.
26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响   总被引:44,自引:0,他引:44  
研究长期小麦连作施肥条件下土壤微生物量碳、氮,土壤呼吸的变化及其与土壤养分的相关性。以陕西长武长期定位试验为平台,应用氯仿熏蒸-K2SO4提取法、碱液吸收法和化学分析法分析了长达26a不同施肥处理农田土壤微生物量碳、微生物量氮和土壤呼吸之间的差异及其调控土壤肥力的作用。长期施肥及种植作物,均能提高土壤微生物量碳、氮含量,尤其是施用有机肥,土壤微生物量碳、氮含量高于单施无机肥的处理,土壤呼吸量也提高15.91%—75.73%,而施用无机肥对于土壤呼吸无促进作用。土壤微生物生物量碳氮、土壤呼吸与土壤有机质、全氮呈极显著相关。长期有机无机肥配施可以提高土壤微生物量碳氮、土壤呼吸,氮磷肥与厩肥配施对提高土壤肥力效果最好。微生物量碳氮及土壤呼吸可以反映土壤质量的变化,作为评价土壤肥力的生物学指标。  相似文献   

13.
Rising levels of atmospheric CO2 may stimulate forest productivity in the future, resulting in increased carbon storage in terrestrial ecosystems. However, heavy metal contamination may interfere with this, though the response is not yet known. In this study, we investigated the effect of elevated CO2 and Pb contamination on microorganisms and decomposition in pine tree forest soil. Three-year old pine trees (Pinus densiflora) were planted in Pb contaminated soils (500 mg/kg-soil) and uncontaminated soils and cultivated for three months in a growth chamber where the CO2 concentration was controlled at 380 or 760 mg/kg. Structures of the microbial community were comparatively analyzed in bulk and in rhizosphere soil samples using community-level physiological profiling (CLPP) and 16S rRNA gene PCR-DGGE (denaturing gradient gel electrophoresis). Additionally, microbial activity in rhizospheric soil, growth and the C/N ratio of the pine trees were measured. Elevated CO2 significantly increased microbial activities and diversity in Pb contaminated soils due to the increase in carbon sources, and this increase was more distinctive in rhizospheric soil than in bulk soils. In addition, increased plant growth and C/N ratios of pine needles at elevated CO2 resulted in an increase in cation exchange capacity (CEC) and dissolved organic carbon (DOC) of the rhizosphere in Pb contaminated soil. Taken together, these findings indicate that elevated CO2 levels and heavy metals can affect the soil carbon cycle by changing the microbial community and plant metabolism.  相似文献   

14.
The Verrucomicrobia constitute a newly discovered division of the Bacteria identified as a numerically abundant component of soil microbial communities in numerous sites around the world. The relative abundance of rRNA from Verrucomicrobia was investigated in the soil to examine the influence of specific environmental factors on the distribution of Verrucomicrobia and to better understand the distribution of this group in terrestrial ecosystems. The abundance of the verrucomicrobial rRNA was determined by using a novel oligonucleotide probe that is specific for verrucomicrobial 16S rRNA. The abundance of verrucomicrobial 16S rRNA in soil microbial communities was determined in relation to plant community composition and soil management history over a period of 2 years. Additional samples were analyzed to determine if verrucomicrobial rRNA relative abundance changes in relation to either soil depth or soil moisture content. The Verrucomicrobia composed 1.9+/-0.2% of the microbial community rRNA present in the 85 soil samples examined. The distribution of verrucomicrobial rRNA in the soil reveals that Verrucomicrobia are significantly affected by environmental characteristics that change in relation to time, soil history, and soil depth, and reveals that a statistically significant amount of the variation in verrucomicrobial rRNA abundance can be explained by changes in soil moisture content.  相似文献   

15.
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.  相似文献   

16.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

17.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil(-1), 3 to 3,300 mg of total Cr kg of soil(-1), and 1 to 17,100 mg of Pb kg of soil(-1). Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [(3)H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC(50) values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO(4)2- and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

18.
平衡施肥对缺磷红壤性水稻土的生态效应   总被引:8,自引:0,他引:8  
为了研究平衡施肥对缺磷水稻土的生态效应,对长期缺施磷肥水稻土进行了3.5年平衡施肥试验。试验采取盆栽水稻的方式,在长期缺施磷肥的红壤性水稻土上比较不施磷肥(NK)、平衡施用氮磷钾无机肥(NPK)、无机氮磷钾肥配施硅肥(NPKSi)、无机氮磷钾肥配施有机肥(无机肥占3/5)、NPK基础上增施磷肥(NKhP)、NPKM基础上增施磷肥(NKhPM)处理的土壤肥力、土壤微生物特性、土壤磷的渗漏量以及地上部水稻产量、养分利用率、磷肥利用率的变化。试验表明,平衡施肥处理NPK、NPKSi、NPKM、NKhPM显著提高水稻产量,比不施磷肥(NK)平均增产147%,其中NPKM提高152%;能提高土壤肥力,比不施磷肥土壤有机质含量平均提高18.5%,其中NPKM提高30.1%;显著提高土壤微生物生物量,比不施磷肥土壤微生物生物量碳(MBC)平均提高57.2%,其中NPKM提高87.1%;提高氮素、钾素养分利用率,比不施磷肥平均分别提高120.3%、33.6%,其中NPKM分别提高152%、43%。而长期重施无机磷肥处理(NKhP)虽然水稻产量比不施磷肥处理提高125.1%,但因土壤中磷酸根离子含量过高影响土壤微生物正常生长,土壤微生物活度比不施磷处理降低9.4%,土壤微生物量碳(MBC)降低2.4%,稻田土壤微生物生态系统质量劣化。此外,重施磷肥处理(包括NKhP、NKhPM)易导致稻田水体的磷污染。各处理比较,NPKM综合生态效应最佳,以下依次是NKhPM、NPKSi、NPK,NKhP,NKhP对稻田土壤微生物生态系统产生负效应。根据试验结果,平衡施肥是恢复缺磷水稻土的有效措施,其中在平衡施用氮磷钾化肥的基础上增施有机肥或硅肥效果较好。  相似文献   

19.
Exploration of environmental factors governing soil microbial community composition is long overdue and now possible with improved methods for characterizing microbial communities. Previously, we observed that rice soil microbial communities were distinctly different from tomato soil microbial communities, despite management and seasonal variations within soil type. Potential contributing factors included types and amounts of organic inputs, organic carbon content, and timing and amounts of water inputs. Of these, both soil water content and organic carbon availability were highly correlated with observed differences in composition. We examined how organic carbon amendment (compost, vetch, or no amendment) and water additions (from air dry to flooded) affect microbial community composition. Using canonical correspondence analysis of phospholipid fatty acid data, we determined flooded, carbon-amended (+C) microcosm samples were distinctly different from other +C samples and unamended (–C) samples. Although flooding without organic carbon addition influenced composition some, organic carbon addition was necessary to substantially alter community composition. Organic carbon availability had the same general effects on microbial communities regardless of whether it was compost or vetch in origin. In addition, flooded samples, regardless of organic carbon inputs, had significantly lower ratios of fungal to bacterial biomarkers, whereas under drier conditions and increased organic carbon availability the microbial communities had higher proportions of fungal biomass. When comparing field and microcosm soil, flooded +C microcosm samples were most similar to field-collected rice soil, whereas all other treatments were more similar to field-collected tomato soil. Overall, manipulating water and carbon content selected for microbial communities similar to those observed when the same factors were manipulated at the field scale.  相似文献   

20.
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号