首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A particulate preparation of cyclic AMP phosphodiesterase from rat thymic lymphocytes exhibited two apparent Km's at 0.9×10−6M and 8.0×10−6M. The enzyme with the higher Km was stimulated by cyclic GMP by a mechanism involving an increase in the Vmax of the enzyme with no change in the Km. Cyclic GMP competitively inhibited the enzyme with the low apparent Km which had a Ki for cyclic GMP of 4×10−5M. The modulation of cyclic AMP phosphodiesterase activity by cyclic GMP in the control of cyclic AMP-mediated lymphocyte proliferation is discussed.  相似文献   

2.
The properties of cyclic AMP-dependent protein kinase I isolated from rabbit reticulocytes were further investigated. The enzyme catalyzes the phosphorylation of histone in the presence of ATP and Mg2+ and this reaction is stimulated by cyclic AMP. The pH optimum of the reaction was between 8.5 and 9.0, when assayed in the presence of cyclic AMP. No distinct pH optimum was observed in the absence of the cyclic nucleotide. The Km values for ATP appeared to be very similar whether it was determined in the presence (Km = 1.7 × 10−4m) or absence (Km = 2.5 × 10−4m) of cyclic AMP. The rate of heat inactivation of the catalytic activity and the cyclic AMP binding activity of kinase I were found to be dependent on the presence of Mg2+, ATP, and/or cyclic AMP. In the presence of cyclic AMP, the rate of inactivation of the catalytic activity of kinase I at 53 ° was accelerated. On the other hand, the cyclic AMP binding activity appeared to be protected from heat inactivation by the cyclic nucleotide. When both ATP and Mg2+ were present in the heating mixture, no loss of catalytic and binding activities of kinase I were observed even up to 8 min of heating at 53 °. The cyclic AMP binding activity of kinase I was almost completely inhibited by mercuric acetate at a concentration of 1 mm, while the loss in catalytic activity was only 50%. These results substantiate our previous observation that kinase I contains two nonidentical subunits, a catalytic subunit and a cyclic AMP binding subunit.  相似文献   

3.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

4.
A cyclic AMP binding protein has been purified to electrophoretic homogeneity from Jerusalem artichoke rhizome tissues. Its MW is ca. 240 000 and the apparent constant of cyclic AMP binding to the protein is 2.3 × 10?7 M. When tested using Millipore filter assay, cyclic AMP binding activity was enhanced by protamine and histone, but not by casein and phosvitin. Of several purine derivatives tested, only 5′-AMP and adenosine inhibited significantly the binding of cyclic AMP by the protein. The protein also binds adenosine and this binding is not affected by cyclic AMP or by other purine derivatives. The apparent binding constant for adenosine is 1.0 × 10?6 M. The binding protein did not show protein kinase activity. In addition, it did not affect the chromatin-bound DNA dependent RNA polymerase of homologous origin, either in the presence or absence of cyclic AMP. The binding protein is devoid of the following activities: cyclic AMP phosphodiesterase, 5′-nucleotidase, adenosine deaminase and ATPase.  相似文献   

5.
6.
A cyclic AMP-adenosine binding protein, whose binding sites are activated by preincubation in the presence of Mg+-ATP, has been purified to apparent homogeneity from mouse liver (P.M. Ueland and S.O. Døskeland, 1977, J. Biol. Chem.,252, 677–686). The degree of activation of both the cyclic AMP binding site and a high-affinity site for adenosine depends on the concentration of ATP during the preincubation. The velocity and the degree of activation are dependent on the temperature and the presence of Mg2+ and K+. The NH4+ ion can be substituted for K+, whereas Na+ is inefficient. Low pH promotes the conversion from the inactive to the active form. The apparent affinity for adenosine to the high-affinity site for this adenine derivative and the affinity for cyclic AMP to the site specific for this nucleotide are independent of the degree of activation as judged from the slope of Scatchard plots. The activation of the cyclic AMP binding site by ATP (6 mm) was determined at pH 7 in the presence of 10 μm cyclic AMP, AMP, ADP, or adenosine. Adenosine specifically inhibits the activation and does not promote the inactivation of the binding protein. The possibility that the apparent inhibition of activation was effected by interference with cyclic AMP binding by adenosine was ruled out.  相似文献   

7.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

8.
A cyclic AMP-adenosine binding protein from mouse liver has been purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis in the absence and presence of sodium dodecyl sulfate and by analytical ultracentrifugation. The binding protein had a Stokes radium of 48 A based on gel chromatography. Both the purified binding protein and the binding activity in fresh cytosol sedimented as 9 S on sucrose gradient centrifugation. The homogeneous protein had a sedimentation coefficient (S20, w) of 8.8 x 10-13 s, as calculated from sedimentation velocity experiments. By use of the Stokes radius and S20, w', the molecular weight was calculated to be 180,000. The protein was composed of polypeptides having the same molecular weight of 45,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thus appeared to consist of four subunits of equal size. The isoelectric point, pI = 5.7. The binding capacity for cyclic AMP increased by preincubating the receptor protein in the presence of Mg2+ ATP. This process, tentatively termed activation, was studied in some detail and was shown not be be be accompanied by dissociation, aggregation, or phosphorylation of the binding protein. Cyclic AMP was bound to the protein with an apparent dissociation constant (Kd) of 1.5 x 10-7 M. The binding of cyclic AMP was competitively inhibited by adenosine, AMP, ADP, and ATP whose inhibition constants were 8 x 10-7 M, 1.2X 10-6 M, 1.5 X 10-6 M, and higher than 5 x 10-6 M respectively. A hyperbolic Scatchard plot was obtained for the binding of adenosine to the activated binding protein, indicating more than one site for adenosine. The binding of adenosine to the site with the highest affinity (Kd=2 x 10-7 M) for this nucleoside was not suppressed by excess cyclic AMP and was thus different from the aforementioned cyclic AMP binding site. Cyclic GMP, GMP, guanosine, cyclic IMP, IMP, and inosine did not inhibit the binding of either cyclic AMP or adenosine. The binding protein had no cyclic AMP phosphodiesterase, adenosine deaminase, phosphofructokinase, or protein kinase activities, nor does it inhibit the catalytic subunit of the cyclic AMP-dependent protein kinase.  相似文献   

9.
Adenosine 3':5'-monophosphate (cyclic AMP), a mediator of hormone action in a variety of tissues, has been measured in its free and bound forms in intact cardiac tissue. We have used a rapid high dilution technique which involves tissue homogenization, subcellular fractionation, and separation of bound from free cyclic AMP by Millopore filtration. The precision of this method is dependent upon minimization of binding and dissociation of cyclic AMP that occur during the preparation and handling of tissue homogenates. In each experiment, a tracer of cyclic [3H]AMP prebound to isolated cardiac binding protein was freed of unbound cyclic [3H]AMP by Sephadex gel filtration and added to the tissue just prior to homogenization in cold EDTA buffer. This tracer was therefore treated identically to the sample through all subsequent dilution, fractionation, and filtration procedures, and provided an acurate internal monitor for total cyclic AMP dissociation during the course of the free-bound determination. Each tissue sample was then individually corrected for dissociation. Rapid dilution to produce a 1:1000 homogenate was found to lower endogenous cyclic AMP levels sufficiently to make binding (or rebinding) during the procedure negligible (less than 5%). Spontaneously beating rat right atria (controls) contained 5.96 +/- 0.28 pmol of cyclic AMP/mg of protein (n = 19) of which 41 and 14% were bound to soluble and particulate proteins, respectively. The remaining cyclic AMP was free. Pretreatment of the tissue with 1 muM isoproterenol (30 s at 30 degrees) increased both the bound and free forms of cyclic AMP (n = 8). While free cyclic AMP increased 420% with the catecholamine, the bound forms increased 240% (soluble) and 60% (particulate). Similar results were obtained when atria (n = 6) were treated with the phosphodiesterase inhibitor, methylisobutylxanthine (0.5 mM, 10 min at 30 degrees). When both agents were used together, cyclic AMP bound to soluble proteins was elevated 4-fold over control while free cyclic AMP increased 27-fold (n = 7), indicating saturation of the soluble sites. It could be calculated that less than one-third of these sites are occupied in the unstimulated cell. These sites may represent the R subunit of cyclic AMP-dependent protein kinase. The data suggest that half-maximal binding in vivo occurs at an intracellular free cyclic AMP concentration of about 1 muM.  相似文献   

10.
DEAE-cellulose chromatography demonstrated the presence of three peaks of cyclic nucleotide phosphodiesterase activity in the hearts of cattle during the summer and only two peaks during exposure to freezing temperatures. The hydrolysis of 10?6M cyclic AMP by peak II, the variable activity, was stimulated 160% by 10?6M cyclic GMP and was inhibited by chelation of Ca2+. Peak II activity was not a distinct enzyme but rather a mixture of activator-dependent phosphodiesterase, phosphodiesterase activator and type II cyclic AMP-dependent protein kinase.  相似文献   

11.
Our results indicate that indomethacin inhibits cyclic AMP phosphodiesterase in the myometrium of the pregnant rhesus monkey under in vitro as well as in vivo conditions. Kinetic data on extracts of myometrium from pregnant rhesus monkeys indicated two cyclic AMP phosphodiesterase activities. The apparent Km value for the high affinity enzyme averaged 3.9 μM and for the low affinity enzyme 23 μM; the Vmax values averaged 0.56 and 1.4 nmoles cyclic AMP hydrolized per mg protein min?1 respectively. When indomethacin was added to the myometrial extracts, the activity of the high Km phosphodiesterase was competitively inhibited, with an average Ki of 200 μM; the low Km enzyme was noncompetitively inhibited with an average Ki of 110 μM. Experiments on myometrial slices demonstrated that 10 μM indomethacin potentiated the effect of PGE1 and epinephrine on cyclic AMP levels, presumably by inhibiting the phosphodiesterase activity. The uterine relaxing effect of indomethacin is generally attributed to the inhibition of prostaglandin synthetase activity. However, treatment of pregnant rhesus monkeys with therapeutic doses of indomethacin resulted in a significant inhibition of myometrial cyclic AMP phosphodiesterase activity in association with uterine relaxation and prolongation of gestation.  相似文献   

12.
The level of adenosine 3′,5′-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0·10?7 M and 1.5·10?6 M, respectively. The activity of adenylate cyclase in a 105 000 × g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5·10?6 M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

13.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

14.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

15.
A high-affinity form of cyclic AMP phosphodiesterase, purified to apparent homogeneity from dog kidney, was labeled with 125I using a solid-state lactoperoxidaseglucose oxidase system and its purity confirmed by acrylamide gel electrophoresis and isoelectric focusing. Sheep anti-cyclic AMP phosphodiesterase immunoglobulin fraction was analyzed for 125I-enzyme binding and covalently bound to agarose A 1.5m for isotopically labeled antigen displacement. Anti-phosphodiesterase antiserum was purified by Sepharose 4B-cAPDE affinity chromatography and used for a radioimmunoassay employing second-antibody precipitation. The specificity of the anti-cyclic AMP phosphodiesterase antibody was established by its use as a covalently bound affinity ligand for cyclic AMP phosphodiesterase purification and analysis of sodium dodecyl sulfate-gel extracts of partially purified and purified dog kidney supernatants. Radioimmunoassay using a monospecific antibody preparation demonstrated the similarity of high-affinity cyclic AMP phosphodiesterase forms of different tissues and species that had been separated by DEAE-cellulose chromatography. Various purified preparations of calmodulin, as well as brain calcineurin, did not cross-react in the high-affinity cyclic AMP phosphodiesterase radioimmunoassay. However, higher molecular weight cyclic GMP/lower affinity cyclic AMP phosphodiesterase enzyme forms, partially purified by anion-exchange chromatography, gel filtration, and Cibacron blue adsorption, were shown to cross-react in the high-affinity cAMP phosphodiesterase radioimmunoassay. These studies suggest immunological similarities between the major forms of this enzyme system and the possibility of higher molecular weight complexes containing both cyclic GMP and cyclic AMP hydrolytic sites.  相似文献   

16.
1. The 3':5'-cyclic AMP phosphodiesterase in the microsomal fraction of baker's yeast is highly specific for cyclic AMP, and not inhibited by cyclic GMP, cyclic IMP or cyclic UMP. Catalytic activity is abolished by 30 micrometer-EDTA. At 30 degrees C and pH8.1, the Km is 0.17 micrometer, and theophylline is a simple competitive inhibitor with Ki 0.7 micrometer. The pH optimum is about 7.8 at 0.25 micrometer-cyclic AMP, so that over the physiological range of pH in yeast the activity changes in the opposite direction to that of adenylate cyclase [PH optimum about 6.2; Londesborough & Nurminen (1972) Acta Chem. Scand. 26, 3396-3398].2. At pH 7.2, dissociation of the enzyme from dilute microsomal suspensions increased with ionic strength and was almost complete at 0.3 M-KCl. MgCl2 caused more dissociation than did KCl or NaCl at the same ionic strength, but at low KCl concentrations binding required small amounts of free bivalent metal ions. In 0.1 M-KCl the binding decreased between pH 4.7 and 9.3. At pH 7.2 the binding was independent of temperature between 5 and 20 degrees C. These observations suggest that the binding is electrostatic rather than hydrophobic. 3. The proportion of bound activity increased with the concentration of the microsomal fraction, and at 22 mg of protein/ml and pH 7.2 was 70% at I0.18, and 35% at I0.26. Presumably a substantial amount of the enzyme is particle-bound in vivo. 4. At 5 degrees C in 10 mM-potassium phosphate, pH 7.2, the apparent molecular weight of KCl-solubilized enzyme decreased with enzyme concentration from about 200 000 to 40 000. In the presence of 0.5M-KCl, a constant mol.wt. of about 55 000 was observed over a 20-fold range of enzyme concentrations.  相似文献   

17.
DEAE-cellulose chromatography, in the presence and absence of Ca2+, of the 16,000g supernatant from bovine carotid artery smooth muscle has been used to separate four different types of cyclic nucleotide phosphodiesterase (3′:5′-cyclic-nucleotide 5′-nucleotidohydrolase, EC 3.1.4.17) activity, designated types A, B, C, and D. Type A is a high affinity, cyclic AMP-specific form of phosphodiesterase (Km = 1.6 μM) and elutes at relatively high ionic strength. Type B is a high affinity (Km = 2 μM), cyclic GMP-specific form which elutes at low ionic strength. Type C is a mixed substrate form, displaying anomalous kinetics for the hydrolysis of both cyclic AMP and cyclic GMP. It elutes from DEAE-cellulose at an ionic strength intermediate to that of types A and B. Type D is also a mixed substrate form of phosphodiesterase. However, its elution pattern from DEAE-cellulose differs, depending on whether Ca2+ is present or not, suggesting a Ca2+-dependent interaction between this enzyme form and the acidic Ca2+-dependent regulator protein (CDR). The hydrolytic activity of type D is stimulated by CDR, and activation requires the simultaneous presence of Ca2+ and CDR. Kinetic analysis of cyclic AMP hydrolysis by type D gives a linear double reciprocal plot; activation has no effect on the Km but increases the velocity approximately sixfold. Activation of cyclic GMP hydrolysis apparently affects both the Km and V. At all concentrations tested, the degree of activation is higher with cyclic AMP than with cyclic GMP. It is suggested that while the activable form of phosphodiesterase may play a relatively minor role in the overall hydrolysis of cyclic nucleotides, Ca2+-dependent activation may have a more important role in regulating the level of cyclic AMP than that of cyclic GMP in vascular smooth muscle.  相似文献   

18.
CuCl2 non-comepetitively inhibited the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent phosphodiesterase from bovine heart in the presence of 5 mM Mg2+, 10 μM Ca2+ and phosphodiesterase activator with Ki values of approximately 2 μM for both substrates. CuCl2 inhibition was also non-competitive with Mg2+, Ca2+ and phosphodiesterase activator. Dialysis demonstrated that CuCl2 inhibition in reversible. Treatment of the enzyme with p-hydroxymercuribenzoate resulted in the loss of enzyme activity, suggesting the presence of sulfhydryl groups essential for enzyme activity. The inhibitory activity of CuCl2 was not additive with that p-hydroxymercuribenzoate, therefore CuCl2 may inhibit enzyme activity by binding to one or more essential sulfhydryl groups. CuCl2 also inhibited the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase from bovine heart with an I50 value of 18 μM. Several effects of Cu2+ are discussed which have been noted in other studies and might be due, in part, to changes in cyclic nucleotide levels following alterations in phosphodiesterase activity.  相似文献   

19.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

20.
Insulin-receptor interactions in liver cell membranes   总被引:17,自引:0,他引:17  
The specific binding of 125I-insulin to liver cell membranes is a saturable process with respect to insulin. Binding is displaced by low concentrations of native insulin but not by biologically inactive insulin derivatives or by other peptide hormones. The rate constants of association (3.5 × 106 mole−1 sec−1) and of dissociation (2.7 × 10−4 sec−1) of the insulin-membrane complex can be determined independently. The dissociation constant of the complex, determined from the rate constants and from equilibrium data, is about 7 × 10−11M. Complex formation does not result in degradation of the insulin molecule. The binding interaction is a dissociable process involving a homogeneous membrane structure which is almost certainly the biologically significant receptor. The kinetic properties, and the effects of enzymic perturbations of the membrane, suggest that the insulin receptors of liver and of adipose tissue cells may be very similar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号