首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Receptor-like proteins (RLPs) are cell surface receptors that typically consist of an extracellular leucine-rich repeat domain, a transmembrane domain, and a short cytoplasmatic tail. In several plant species, RLPs have been found to play a role in disease resistance, such as the tomato (Solanum lycopersicum) Cf and Ve proteins and the apple (Malus domestica) HcrVf2 protein that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. In addition, RLPs play a role in plant development; Arabidopsis (Arabidopsis thaliana) TOO MANY MOUTHS (TMM) regulates stomatal distribution, while Arabidopsis CLAVATA2 (CLV2) and its functional maize (Zea mays) ortholog FASCINATED EAR2 regulate meristem maintenance. In total, 57 RLP genes have been identified in the Arabidopsis genome and a genome-wide collection of T-DNA insertion lines was assembled. This collection was functionally analyzed with respect to plant growth and development and sensitivity to various stress responses, including susceptibility toward pathogens. A number of novel developmental phenotypes were revealed for our CLV2 and TMM insertion mutants. In addition, one AtRLP gene was found to mediate abscisic acid sensitivity and another AtRLP gene was found to influence nonhost resistance toward Pseudomonas syringae pv phaseolicola. This genome-wide collection of Arabidopsis RLP gene T-DNA insertion mutants provides a tool for future investigations into the biological roles of RLPs.  相似文献   

2.
The tomato (Lycopersicon esculentum) Cf-9 resistance gene encodes the first characterized member of the plant receptor-like protein (RLP) family. Other RLPs such as CLAVATA2 and TOO MANY MOUTHS are known to regulate development. The domain structure of RLPs consists of extracellular leucine-rich repeats, a transmembrane helix, and a short cytoplasmic region. Here, we identify 90 RLPs in rice (Oryza sativa) and compare them with functionally characterized RLPs from different plant species and with 56 Arabidopsis (Arabidopsis thaliana) RLPs, including the downy mildew resistance protein RPP27. Many RLPs cluster into four distinct superclades, three of which include RLPs known to be involved in plant defense. Sequence comparisons reveal diagnostic amino acid residues that may specify different molecular functions in different RLP subtypes. This analysis of rice RLPs thus identified at least 73 candidate resistance genes and four genes potentially involved in development. Due to the synteny between rice and other Gramineae, this analysis should provide valuable tools for experimental studies in rice and other cereals.  相似文献   

3.
In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif–containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.  相似文献   

4.
Stomata, the most influential components in gas exchange with the atmosphere, represent a revealing system for studying cell fate determination. Studies in Arabidopsis thaliana have demonstrated that many of the components, functioning in a signaling cascade, guide numerous cell fate transitions that occur during stomatal development. The signaling cascade is initiated at the cell surface through the activation of the membrane receptors TOO MANY MOUTHS (TMM) and/or ERECTA (ER) family members by the secretory peptide EPIDERMAL PATTERNING FACTOR1 (EPF1) and/or a substrate processed proteolytically by the subtilase STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) and transduced through cytoplasmic MAP kinases (YODA (YDA), MKK4/MKK5, and MPK3/MPK6) towards the nucleus. In the nucleus, these MAP kinases regulate the activity of the basic helix‐loop‐helix (bHLH) proteins SPEECHLESS (SPCH), MUTE, and FAMA, which act in concert with the bHLH‐Leu zipper protein SCREAM (SCRM) (and/or its closely related paralog, SCREAM2). This article reviews current insights into the role of this signaling cascade during stomatal development.  相似文献   

5.
In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination.Key words: arabidopsis, epidermis, CPC, stomata, TMM  相似文献   

6.
7.
Suzaki T  Yoshida A  Hirano HY 《The Plant cell》2008,20(8):2049-2058
Postembryonic development in plants depends on the activity of the shoot apical meristem (SAM) and root apical meristem (RAM). In Arabidopsis thaliana, CLAVATA signaling negatively regulates the size of the stem cell population in the SAM by repressing WUSCHEL. In other plants, however, studies of factors involved in stem cell maintenance are insufficient. Here, we report that two proteins closely related to CLAVATA3, FLORAL ORGAN NUMBER2 (FON2) and FON2-LIKE CLE PROTEIN1 (FCP1/Os CLE402), have functionally diversified to regulate the different types of meristem in rice (Oryza sativa). Unlike FON2, which regulates the maintenance of flower and inflorescence meristems, FCP1 appears to regulate the maintenance of the vegetative SAM and RAM. Constitutive expression of FCP1 results in consumption of the SAM in the vegetative phase, and application of an FCP1 CLE peptide in vitro disturbs root development by misspecification of cell fates in the RAM. FON1, a putative receptor of FON2, is likely to be unnecessary for these FCP1 functions. Furthermore, we identify a key amino acid residue that discriminates between the actions of FCP1 and FON2. Our results suggest that, although the basic framework of meristem maintenance is conserved in the angiosperms, the functions of the individual factors have diversified during evolution.  相似文献   

8.
Core signaling pathways function in multiple programs during multicellular development. The mechanisms that compartmentalize pathway function or confer process specificity, however, remain largely unknown. In Arabidopsis thaliana, ERECTA (ER) family receptors have major roles in many growth and cell fate decisions. The ER family acts with receptor TOO MANY MOUTHS (TMM) and several ligands of the EPIDERMAL PATTERNING FACTOR LIKE (EPFL) family, which play distinct yet overlapping roles in patterning of epidermal stomata. Here, our examination of EPFL genes EPFL6/CHALLAH (CHAL), EPFL5/CHALLAH-LIKE1, and EPFL4/CHALLAH-LIKE2 (CLL2) reveals that this family may mediate additional ER-dependent processes. chal cll2 mutants display growth phenotypes characteristic of er mutants, and genetic interactions are consistent with CHAL family molecules acting as ER family ligands. We propose that different classes of EPFL genes regulate different aspects of ER family function and introduce a TMM-based discriminatory mechanism that permits simultaneous, yet compartmentalized and distinct, function of the ER family receptors in growth and epidermal patterning.  相似文献   

9.
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR amplified from Ler-0 and transformed into mutant Col-rpp7.1 plants. Homozygous transgenic lines conferred resistance to Hiks1 and at least four Ler-0 avirulent/Columbia-0 (Col-0) virulent isolates of downy mildew pathogen. A full-length RPP27 cDNA was isolated, and analysis of the deduced amino acid sequences showed that the gene encodes a receptor-like protein (RLP) with a distinct domain structure, composed of a signal peptide followed by extracellular Leu-rich repeats, a membrane spanning region, and a short cytoplasmic carboxyl domain. RPP27 is the first RLP-encoding gene to be implicated in disease resistance in Arabidopsis, enabling the deployment of Arabidopsis techniques to investigate the mechanisms of RLP function. Homology searches of the Arabidopsis genome, using the RPP27, Cf-9, and Cf-2 protein sequences as a starting point, identify 59 RLPs, including the already known CLAVATA2 and TOO MANY MOUTHS genes. A combination of sequence and phylogenetic analysis of these predicted RLPs reveals conserved structural features of the family.  相似文献   

10.
Root meristem activity is essential for root morphogenesis and adaptation, but the molecular mechanism regulating root meristem activity is not fully understood. Here, we identify an F-box family E3 ubiquitin ligase named SHORT PRIMARY ROOT (SHPR) that regulates primary root (PR) meristem activity and cell proliferation in rice. SHPR loss-of-function mutations impair PR elongation in rice. SHPR is involved in the formation of an SCF complex with the Oryza sativa SKP1-like protein OSK1/20. We show that SHPR interacts with Oryza sativa SEUSS-LIKE (OsSLK) in the nucleus and is required for OsSLK polyubiquitination and degradation by the ubiquitin 26S-proteasome system (UPS). Transgenic plants overexpressing OsSLK display a shorter PR phenotype, which is similar to the SHPR loss-of-function mutants. Genetic analysis suggests that SHPR promotes PR elongation in an OsSLK-dependent manner. Collectively, our study establishes SHPR as an E3 ubiquitin ligase that targets OsSLK for degradation, and uncovers a protein ubiquitination pathway as a mechanism for modulating root meristem activity in rice.  相似文献   

11.
The shoot apical meristem is the ultimate source of the cells that constitute the entire aboveground portion of the plant body. In Arabidopsis thaliana, meristem maintenance is regulated by the negative feedback loop of WUSCHEL-CLAVATA (WUS-CLV). Although CLV-like genes, such as FLORAL ORGAN NUMBER1 (FON1) and FON2, have been shown to be involved in maintenance of the reproductive meristems in rice (Oryza sativa), current understanding of meristem maintenance remains insufficient. In this article, we demonstrate that the FON2-LIKE CLE PROTEIN1 (FCP1) and FCP2 genes encoding proteins with similar CLE domains are involved in negative regulation of meristem maintenance in the vegetative phase. In addition, we found that WUSCHEL-RELATED HOMEOBOX4 (WOX4) promotes the undifferentiated state of the meristem in rice and that WOX4 function is associated with cytokinin action. Consistent with similarities in the shoot apical meristem phenotypes caused by overexpression of FCP1 and downregulation of WOX4, expression of WOX4 was negatively regulated by FCP1 (FCP2). Thus, FCP1/2 and WOX4 are likely to be involved in maintenance of the vegetative meristem in rice.  相似文献   

12.
Cyclin D (CYCD) plays an important role in cell cycle progression and reentry in response to external signals. Here, we demonstrate that Arabidopsis thaliana CYCD4 is associated with specific cell divisions in the hypocotyl. We observed that cycd4 T-DNA insertion mutants had a reduced number of nonprotruding cells and stomata in the hypocotyl epidermis. Conversely, CYCD4 overexpression enhanced cell division in nonprotruding cell files in the upper region of the hypocotyls, where stomata are usually formed in wild-type plants. The overproliferative cells were of stomatal lineage, which is marked by the expression of the TOO MANY MOUTHS gene, but unlike the meristemoids, most of them were not triangular. Although the phytohormone gibberellin promoted stomatal differentiation in the hypocotyl, inhibition of gibberellin biosynthesis did not prevent CYCD4 from inducing cell division. These results suggested that CYCD4 has a specialized function in the proliferation of stomatal lineage progenitors rather than in stomatal differentiation. We propose that CYCD4 controls cell division in the initial step of stomata formation in the hypocotyl.  相似文献   

13.
14.
15.
Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells. However, the factors connecting cytokinin, auxin, SHY2 and PLT1/2 are largely unknown. In a recent study, we have shown that the DA1-related protein 2 (DAR2) acts downstream of cytokinin and SHY2 but upstream of PLT1/2 to affect root meristem size. Here, we discuss the possible molecular mechanisms by which Arabidopsis DAR2 controls root meristem size.  相似文献   

16.

Background and aims

Root elongation is essential in the determination of the root system architecture (RSA). Using experimental data, we show how it varies in the RSA and suggest a new and simple modeling approach to predict these variations.

Methods

We analyzed variation in elongation on data from pot-grown plants belonging to two different species (Helianthus annuus L. and Noccaea caerulescens (J.Presl & C.Presl) F.K.Mey). A stochastic model was designed with two successive steps to quantify and simulate these variations. The first step is the definition of a growth potential, reflected by the apical diameter, and depending on the size of the mother root. The second step, during elongation, describes the dynamic evolution of the meristem and its interaction with soil constraints.

Results

The species exhibited differences in their structured variations and very large residual (pseudo-random) variability in elongation rate and final length. The two-step model allowed us to summarize these species characteristics, and to show the interest of considering the stochastic aspects of root growth to correctly simulate the RSA.

Conclusions

Apart from being a more realistic way of simulating root development, this type of model raises new questions regarding the representation of root soil interactions during elongation.  相似文献   

17.
18.
The root is the sole organ taking up water and nutrients from soils. Hence, root system architecture (RSA) is important for enhancing high-level and stable rice (Oryza sativa L.) production. However, the genetic improvement of RSA has received less attention than yield and yield components. Here, we aimed to identify and characterize quantitative trait loci (QTLs) for RSA by determining the maximum root length (MRL) of seedlings grown hydroponically under various concentrations of NH4 +. We used a total of 280 introgression lines (ILs) with an Indica-type variety IR64 genetic background, consisting of ten sibling ILs groups, to detect the QTLs. Greater variation of MRL was found in three sibling ILs groups. In total, five QTLs were detected by single marker analyses: two each on chromosomes 5 and 6 and one on chromosome 7. Among them, the most effective QTL was detected on a segment derived from IR69093-41-2-3-2 (YP5), which was localized to the long-arm of chromosome 6. The QTL, designated as qRL6.4-YP5, concerned in root elongation. MRL and total root length of a near-isogenic line (NIL) for qRL6.4-YP5 were significantly (15.2–24.6 %) higher than those of IR64 over a wide range of NH4 + concentrations. Root number and weight of the NIL were the same as those of IR64. These results indicated that qRL6.4-YP5 was a constitutive QTL for root length in response to change in nitrogen concentrations. To enhance yield potential by improving RSA, qRL6.4-YP5 might help to improve root development in rice molecular breeding programs with marker-assisted selection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号