首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ambrose JC  Cyr R 《The Plant cell》2007,19(1):226-236
During cell division, the mitotic spindle partitions chromosomes into daughter nuclei. In higher plants, the molecular mechanisms governing spindle assembly and function remain largely unexplored. Here, live cell imaging of mitosis in Arabidopsis thaliana plants lacking a kinesin-14 (ATK5) reveals defects during early spindle formation. Beginning during prophase and lasting until late prometaphase, spindles of atk5-1 plants become abnormally elongated, are frequently bent, and have splayed poles by prometaphase. The period of spindle elongation during prophase and prometaphase is prolonged in atk5-1 cells. Time-lapse imaging of yellow fluorescent protein:ATK5 reveals colocalization with perinuclear microtubules before nuclear envelope breakdown, after which it congresses inward from the poles to the midzone, where it becomes progressively enriched at regions of overlap between antiparallel microtubules. In vitro microtubule motility assays demonstrate that in the presence of ATK5, two microtubules encountering one another at an angle can interact and coalign, forming a linear bundle. These data indicate that ATK5 participates in the search and capture of antiparallel interpolar microtubules, where it aids in generating force to coalign microtubules, thereby affecting spindle length, width, and integrity.  相似文献   

2.
Chromosome segregation during anaphase depends on chromosome-to-pole motility and pole-to-pole separation. We propose that in Drosophila embryos, the latter process (anaphase B) depends on a persistent kinesin-5–generated interpolar (ip) microtubule (MT) sliding filament mechanism that “engages” to push apart the spindle poles when poleward flux is turned off. Here we investigated the contribution of the midzonal, antiparallel MT-cross-linking nonmotor MAP, Feo, to this “slide-and-flux-or-elongate” mechanism. Whereas Feo homologues in other systems enhance the midzone localization of the MT-MT cross-linking motors kinesin-4, -5 and -6, the midzone localization of these motors is respectively enhanced, reduced, and unaffected by Feo. Strikingly, kinesin-5 localizes all along ipMTs of the anaphase B spindle in the presence of Feo, including at the midzone, but the antibody-induced dissociation of Feo increases kinesin-5 association with the midzone, which becomes abnormally narrow, leading to impaired anaphase B and incomplete chromosome segregation. Thus, although Feo and kinesin-5 both preferentially cross-link MTs into antiparallel polarity patterns, kinesin-5 cannot substitute for loss of Feo function. We propose that Feo controls the organization, stability, and motor composition of antiparallel ipMTs at the midzone, thereby facilitating the kinesin-5–driven sliding filament mechanism underlying proper anaphase B spindle elongation and chromosome segregation.  相似文献   

3.
During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.  相似文献   

4.
We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin- related proteins. Immunoblots using an antibody raised against a non- conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone.  相似文献   

5.
To ensure proper spindle assembly, microtubule (MT) dynamics needs to be spatially regulated within the cell. The kinesin-13 MCAK is a potent MT depolymerase with a complex subcellular localization, yet how MCAK spatial regulation contributes to spindle assembly is not understood. Here we show that the far C-terminus of MCAK plays a critical role in regulating MCAK conformation, subspindle localization, and spindle assembly in Xenopus egg extracts. Alteration of MCAK conformation by the point mutation E715A/E716A in the far C-terminus increased MCAK targeting to the poles and reduced MT lifetimes, which induced spindles with unfocused poles. These effects were phenocopied by the Aurora A phosphomimetic mutation, S719E. Furthermore, addition of the kinesin-14 XCTK2 to spindle assembly reactions rescued the unfocused-pole phenotype. Collectively our work shows how the regional targeting of MCAK regulates MT dynamics, highlighting the idea that multiple phosphorylation pathways of MCAK cooperate to spatially control MT dynamics to maintain spindle architecture.  相似文献   

6.
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.Key words: CCDC69, aurora B, Plk1, central spindles, midzone components, cytokinesis  相似文献   

7.
Aurora A is a spindle pole–associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150glued on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A''s function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150glued. Although wild-type p150glued binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150glued. Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150glued MBD to limit the microtubule binding of the dynein–dynactin complex and thus regulates spindle assembly.  相似文献   

8.
Regulation of the mitotic spindle's position is important for cells to divide asymmetrically. Here, we use Caenorhabditis elegans embryos to provide the first analysis of the temporal regulation of forces that asymmetrically position a mitotic spindle. We find that asymmetric pulling forces, regulated by cortical PAR proteins, begin to act as early as prophase and prometaphase, even before the spindle forms and shifts to a posterior position. The spindle does not shift asymmetrically during these early phases due to a tethering force, mediated by astral microtubules that reach the anterior cell cortex. We show that this tether is normally released after spindle assembly and independently of anaphase entry. Monitoring microtubule dynamics by photobleaching segments of microtubules during anaphase revealed that spindle microtubules do not undergo significant poleward flux in C. elegans. Together with the known absence of anaphase A, these data suggest that the major forces contributing to chromosome separation during anaphase originate outside the spindle. We propose that the forces positioning the mitotic spindle asymmetrically are tethered until after the time of spindle assembly and that these same forces are used later to drive chromosome segregation at anaphase.  相似文献   

9.
BimC kinesins are required for mitotic spindle assembly in a variety of organisms. These proteins are localized to centrosomes, spindle microtubules, and the spindle midzone. We have previously shown that the Caenorhabditis elegans Aurora B kinase AIR-2 is required for the localization of the ZEN-4 kinesin protein to midzone microtubules. To determine whether the association of BimC kinesins with spindle microtubules is also dependent on AIR-2, we examined the expression pattern of BMK-1, a C. elegans BimC kinesin, in wild-type and AIR-2-deficient embryos. BMK-1 is highly expressed in the hermaphrodite gonad and is localized to meiotic spindle microtubules in the newly fertilized embryo. In mitotic embryos, BMK-1 is associated with spindle microtubules from prophase through anaphase and is concentrated at the spindle midzone during anaphase and telophase. In the absence of AIR-2, BMK-1 localization to meiotic and mitotic spindles is greatly reduced. This is not a consequence of loss of ZEN-4 localization because BMK-1 is appropriately localized in ZEN-4-deficient embryos. Furthermore, AIR-2 and BMK-1 directly interact with one another and the C-terminal tail domain of BMK-1 is specifically phosphorylated by AIR-2 in vitro. Together with our previous data, these results suggest that at least one function of the Aurora B kinases is to recruit spindle-associated motor proteins to their sites of action.  相似文献   

10.
Mechanisms of centrosome separation and bipolar spindle assembly   总被引:1,自引:0,他引:1  
Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, an increasing body of evidence has emerged demonstrating that kinesin-5-independent mechanisms driving bipolar spindle assembly exist as well. Here, we discuss different pathways that promote initial centrosome separation and bipolar spindle assembly.  相似文献   

11.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.

The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.  相似文献   

12.
During mitosis, chromosomes are connected to a microtubule-based spindle. Current models propose that displacement of the spindle poles and/or the activity of kinetochore microtubules generate mechanical forces that segregate sister chromatids. Using laser destruction of the centrosomes during Caenorhabditis elegans mitosis, we show that neither of these mechanisms is necessary to achieve proper chromatid segregation. Our results strongly suggest that an outward force generated by the spindle midzone, independently of centrosomes, is sufficient to segregate chromosomes in mitotic cells. Using mutant and RNAi analysis, we show that the microtubule-bundling protein SPD-1/MAP-65 and BMK-1/kinesin-5 act as a brake opposing the force generated by the spindle midzone. Conversely, we identify a novel role for two microtubule-growth and nucleation agents, Ran and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is continuously required to sustain chromosome segregation during mitosis.  相似文献   

13.
The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1.  相似文献   

14.
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.  相似文献   

15.
During the first embryonic division in Caenorhabditis elegans, the mitotic spindle is pulled toward the posterior pole of the cell and undergoes vigorous transverse oscillations. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of its close relative Caenorhabditis briggsae. Compared with C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by interspecies changes in the regulation of the cortical Gα–GPR–LIN-5 complex. However, we found that in both species (1) a conserved positional switch controls the onset of spindle oscillations, (2) GPR posterior localization may set this positional switch, and (3) the maximum amplitude of spindle oscillations is determined by the time spent in the oscillating phase. By investigating microevolution of a subcellular process, we identify new mechanisms that are instrumental to decipher spindle positioning.  相似文献   

16.
The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous “spindle envelope” confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.  相似文献   

17.
Different organisms employ a variety of strategies to segregate their chromosomes during mitosis. Despite these differences, however, the basic regulatory principles that govern this intricate process are evolutionarily conserved. Above all, rapid dephosphorylation of mitotic phosphoproteins upon the metaphase-to-anaphase transition has proven to be essential for proper function of the mitotic spindle and accurate chromosome segregation in all eukaryotes. Recently, a central midzone component, the microtubule crosslinker Ase1/PRC1 (anaphase spindle elongation 1/protein regulating cytokinesis 1), was uncovered as a universal target of such control mechanism. Depending on its phosphorylation status, Ase1 either restrains spindle elongation in metaphase or promotes it after anaphase onset via recruitment of kinesin motor proteins to the midzone. Here we discuss the potential role of Ase1/PRC1 as a central regulatory platform that interconnects distinct functions of the midzone such as spindle stability, spindle elongation and cytokinesis. Additionally, we provide a comparative overview of the chromosome segregation strategies used by the main model organisms.  相似文献   

18.
During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.  相似文献   

19.
In all eukaryotic cells, molecular motor proteins play essential roles in spindle assembly and function. The homotetrameric kinesin-5 motors in particular generate outward forces that establish and maintain spindle bipolarity and contribute to microtubule flux. Cell-cycle dependent phosphorylation of kinesin-5 motors regulates their localization to the mitotic spindle. Analysis of live cells further shows that kinesin-5 motors are highly dynamic in the spindle. Understanding the interactions of kinesin-5 motors with microtubules and other spindle proteins is likely to broaden the documented roles of kinesin-5 motors during cell division.  相似文献   

20.

Background

The assembly of the Drosophila embryo mitotic spindle during prophase depends upon a balance of outward forces generated by cortical dynein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is known to contribute to the dynamics of the cell cortex but how this influences the prophase force-balance is unclear.

Principal Findings

Here we investigated this question by injecting the myosin II inhibitor, Y27632, into early Drosophila embryos. We observed a significant increase in both the area of the dense cortical actin caps and in the spacing of the spindle poles. Tracking of microtubule plus ends marked by EB1-GFP and of actin at the cortex revealed that astral microtubules can interact with all regions of these expanded caps, presumably via their interaction with cortical dynein. In Scrambled mutants displaying abnormally small actin caps but normal prophase spindle length in late prophase, myosin II inhibition produced very short spindles.

Conclusions

These results suggest that two complementary outward forces are exerted on the prophase spindle by the overlying cortex. Specifically, dynein localized on the mechanically firm actin caps and the actomyosin-driven contraction of the deformable soft patches of the actin cortex, cooperate to pull astral microtubules outward. Thus, myosin II controls the size and dynamic properties of the actin-based cortex to influence the spacing of the poles of the underlying spindle during prophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号