首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The MIR396 family, composed of ath‐miR396a and ath‐miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth‐Regulating Factor (GRF) gene family. ath‐miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath‐miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc‐miR396c, with a mature sequence identical to ath‐miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down‐regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down‐regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE‐PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.  相似文献   

5.
6.
7.
In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.  相似文献   

8.
9.
10.
11.
12.
植物MYB转录因子功能及调控机制研究进展   总被引:2,自引:0,他引:2  
左然  徐美玲  柴国华  周功克 《生命科学》2012,(10):1133-1140
MYB转录因子是植物中数量最大、功能最多样的转录因子之一,在众多生命过程中扮演重要的角色,已成为当前植物基因功能及表达网络调控研究的热点。结合最新研究进展,综述了植物MYB转录因子家族的进化,并着重阐述了生物学功能及表达调控,为进一步分析功能未知的植物MYB转录因子提供参考。  相似文献   

13.
14.
15.
16.
17.
The phylogeny and evolution of the microRNA families, miR820 and miR396, was analysed across the AA genomes of the Oryza species, the close relatives of domesticated rice. A highly dynamic evolution of the miR820 family was revealed. The number of copies of MIR820 genes, their chromosomal location and the mature microRNA sequence varied greatly with a total of 16 novel miR820 variants being identified. The phylogeny of pre-MIR820 sequences revealed that MIR820 genes of recently evolved Oryza AA genomes may have derived from sequence divergence of one or a few ancestral genes found in wild Australian perennial rice populations, Taxon B (jpn2)-MIR820 genes. Genomic scale duplication played an important role in the evolution of some of the miR396 family genes in AA genome Oryza species. miR396 family contained a MIR396 gene cluster (MIR396a and MIR396c) which was conserved across the cereal genomes. Nucleotide diversity analysis at these two MIR396 loci revealed that domesticated rice has retained less than 10% of the total diversity present in wild species. In contrast, the nucleotide sequence of four MIR396 loci remained almost conserved across domesticated and wild rices, indicating that they were under extreme functional constraint and may be involved in regulating some fundamental processes which are important both for wild and domesticated rices. Expression analysis demonstrated that miR820 variants were expressed in O. glaberrima O. barthi and O. longistaminata genome. These findings pose new challenges to explain the possible role of miR820 variants identified.  相似文献   

18.
19.
The syncytium is a unique plant root organ whose differentiation is induced by plant-parasitic cyst nematodes to create a source of nourishment. Syncytium formation involves the redifferentiation and fusion of hundreds of root cells. The underlying regulatory networks that control this unique change of plant cell fate are not understood. Here, we report that a strong down-regulation of Arabidopsis (Arabidopsis thaliana) microRNA396 (miR396) in cells giving rise to the syncytium coincides with the initiation of the syncytial induction/formation phase and that specific miR396 up-regulation in the developed syncytium marks the beginning of the maintenance phase, when no new cells are incorporated into the syncytium. In addition, our results show that miR396 in fact has a role in the transition from one phase to the other. Expression modulations of miR396 and its Growth-Regulating Factor (GRF) target genes resulted in reduced syncytium size and arrested nematode development. Furthermore, genome-wide expression profiling revealed that the miR396-GRF regulatory system can alter the expression of 44% of the more than 7,000 genes reported to change expression in the Arabidopsis syncytium. Thus, miR396 represents a key regulator for the reprogramming of root cells. As such, this regulatory unit represents a powerful molecular target for the parasitic animal to modulate plant cells and force them into novel developmental pathways.  相似文献   

20.
Bacillus amyloliquefaciens FZB42 is a type of plant growth‐promoting rhizobacterium (PGPR) which activates induced systemic resistance (ISR) in Arabidopsis. Blocking of the synthesis of cyclic lipopeptides and 2,3‐butanediol by FZB42, which have been demonstrated to be involved in the priming of ISR, results in the abolishment of the plant defence responses. To further clarify the ISR activated by PGPRs at the microRNA (miRNA) level, small RNA (sRNA) libraries from Arabidopsis leaves after root irrigation with FZB42, FZB42ΔsfpΔalsS and control were constructed and sequenced. After fold change selection, promoter analysis and target prediction, miR846‐5p and miR846‐3p from the same precursor were selected as candidate ISR‐associated miRNAs. miR846 belongs to the non‐conserved miRNAs, specifically exists in Arabidopsis and its function in the plant defence response remains unclear. The disease severity of transgenic Arabidopsis overexpressing miR846 (OEmiR846) or knockdown miR846 (STTM846) against Pseudomonas syringae DC3000 suggests that the miR846 expression level in Arabidopsis is negatively correlated with disease resistance. Moreover, miR846 in Arabidopsis Col‐0 is repressed after methyl jasmonate treatment. In addition, jasmonic acid (JA) signalling‐related genes are up‐regulated in STTM846, and the stomatal apertures of STTM846 are also less than those in Arabidopsis Col‐0 after methyl jasmonate treatment. Furthermore, the disease resistance of STTM846 transgenic Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is blocked by the addition of the JA biosynthetic inhibitor diethyldiethiocarbamic acid (DIECA). Taken together, our results suggest that B. amyloliquefaciens FZB42 inoculation suppresses miR846 expression to induce Arabidopsis systemic resistance via a JA‐dependent signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号