首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tradeoff between growth and defense is a critical aspect of plant immunity. Therefore, the plant immune response needs to be tightly regulated. Salicylic acid (SA) is an important plant hormone regulating defense against biotrophic pathogens. Recently, N-hydroxy-pipecolic acid (NHP) was identified as another regulator for plant innate immunity and systemic acquired resistance (SAR). Although the biosynthetic pathway leading to NHP formation is already been identified, how NHP is further metabolized is unclear. Here, we present UGT76B1 as a uridine diphosphate-dependent glycosyltransferase (UGT) that modifies NHP by catalyzing the formation of 1-O-glucosyl-pipecolic acid in Arabidopsis thaliana. Analysis of T-DNA and clustered regularly interspaced short palindromic repeats (CRISPR) knock-out mutant lines of UGT76B1 by targeted and nontargeted ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) underlined NHP and SA as endogenous substrates of this enzyme in response to Pseudomonas infection and UV treatment. ugt76b1 mutant plants have a dwarf phenotype and constitutive defense response which can be suppressed by loss of function of the NHP biosynthetic enzyme FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1). This suggests that elevated accumulation of NHP contributes to the enhanced disease resistance in ugt76b1. Externally applied NHP can move to distal tissue in ugt76b1 mutant plants. Although glycosylation is not required for the long-distance movement of NHP during SAR, it is crucial to balance growth and defense.  相似文献   

3.
Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. Loss of UGT76B1 function leads to enhanced resistance to the biotrophic pathogen Pseudomonas syringae and accelerated senescence but increased susceptibility toward necrotrophic Alternaria brassicicola. This is accompanied by constitutively elevated SA levels and SA-related marker gene expression, whereas JA-dependent markers are repressed. Conversely, UGT76B1 overexpression has the opposite effect. Thus, UGT76B1 attenuates SA-dependent plant defense in the absence of infection, promotes the JA response, and delays senescence. The ugt76b1 phenotypes were SA dependent, whereas UGT76B1 overexpression indicated that this gene possibly also has a direct effect on the JA pathway. Nontargeted metabolomic analysis of UGT76B1 knockout and overexpression lines using ultra-high-resolution mass spectrometry and activity assays with the recombinant enzyme led to the ab initio identification of isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as a substrate of UGT76B1. Exogenously applied isoleucic acid increased resistance against P. syringae infection. These findings indicate a novel link between amino acid-related molecules and plant defense that is mediated by small-molecule glucosylation.  相似文献   

4.
Among the regulatory mechanisms of systemic acquired resistance (SAR) in tomato, antagonistic interaction between salicylic acid (SA) and abscisic acid (ABA) signaling pathways was investigated. Treatment with 1,2-benzisothiazol-3(2H)-one1,1-dioxide (BIT) induced SAR in tomato thorough SA biosynthesis. Pretreatment of ABA suppressed BIT-induced SAR including SA accumulation, suggesting that ABA suppressed SAR by inhibiting SA biosynthesis.  相似文献   

5.
Biologically induced systemic acquired resistance in Arabidopsis thaliana   总被引:3,自引:2,他引:1  
Local infection with a necrotizing pathogen can render plants resistant to subsequent infection by normally virulent pathogens. A system for biological induction of such systemic acquired resistance (SAR) in Arabidopsis thaliana is reported. When plants were immunized by local inoculation of a single leaf with avirulent Pseudomonas syringae pv. tomato (Pst) carrying the avrRpt2 avirulence gene, after 2 days other leaves became resistant, as measured symptomatically and by in planta bacterial growth, to challenge with a virulent Pst strain lacking this avirulence gene. Resistance was systemic and protected the plants against infection by other virulent pathogens including P. syringae pv. maculicola. Low-dose inoculation induced a strong SAR and double immunizations did not increase the level of protection indicating that the response of only a few cells to the immunizing bacteria is required. SAR was not induced by the virulent strain of Pst lacking avrRpt2. However, experiments with the Arabidopsis RPS2 disease resistance gene mutant rps2-201, which does not exhibit a local hypersensitive response to Pst carrying the corresponding avirulence gene avrRpt2, indicate that a hypersensitive response contributes to, but is not essential for, the induction of SAR. Thus, avrRpt2 activates either a branching signal pathway or separate parallel pathways for induction of localized hypersensitive resistance and SAR, with downstream potentiation of the systemic response by the local response. Using this system for the biological induction of SAR in Arabidopsis, it should be possible to dissect the molecular genetics of SAR by the isolation of mutants affected in the production, transmission, perception and transduction of the systemic signal(s).  相似文献   

6.
The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response.  相似文献   

7.
Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen‐associated molecular patterns (PAMPs), which are involved in PAMP‐triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg‐induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae‐infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg‐induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae.  相似文献   

8.
Harpin, the product of the hrpN gene of Erwinia amylovora, elicits the hypersensitive response and disease resistance in many plants. Harpin and known inducers of systemic acquired resistance (SAR) were tested on five genotypes of Arabidopsis thaliana to assess the role of SAR in harpin-induced resistance. In wild-type plants, harpin elicited systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. tomato, accompanied by induction of the SAR genes PR-1 and PR-2. However, in experiments with transgenic Arabidopsis plants containing the nahG gene which prevents accumulation of salicylic acid (SA), harpin neither elicited resistance nor activated SAR gene expression. Harpin also failed to activate SAR when applied to nim1 (non-inducible immunity) mutants, which are defective in responding to SA and regulation of SAR. In contrast, mutants compromised in responsiveness to methyl jasmonate and ethylene developed the same resistance as did wild-type plants. Thus, harpin elicits disease resistance through the NIM1-mediated SAR signal transduction pathway in an SA-dependent fashion. The site of action of harpin in the SAR regulatory pathway is upstream of SA.  相似文献   

9.
10.
Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst‐AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T‐DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst‐AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)induced genes whose pathogen‐induced expression is co‐regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan‐derived SM accumulation after Pst‐AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS‐reactive SMs during the HR to Pst‐AvrRpm1, and that decreased resistance to Pst‐AvrRpm1 in ugt mutants is tightly linked to redox perturbation.  相似文献   

11.
Arabidopsis map kinase 4 negatively regulates systemic acquired resistance   总被引:52,自引:0,他引:52  
Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression.  相似文献   

12.
Devadas SK  Raina R 《Plant physiology》2002,128(4):1234-1244
The hypersensitive response (HR) displayed by resistant plants against invading pathogens is a prominent feature of plant-pathogen interactions. The Arabidopsis hypersensitive response like lesions1 (hrl1) mutant is characterized by heightened defense responses that make it more resistant to virulent pathogens. However, hrl1 suppresses avirulent pathogen-induced HR cell death. Furthermore, the high PR-1 expression observed in hrl1 remains unaltered after avirulent and virulent pathogen infections. The suppressed HR phenotype in hrl1 is observed even when an elicitor is expressed endogenously from an inducible promoter, suggesting that an impaired transfer of avirulent factors is not the reason. Interestingly, the lack of HR phenotype in hrl1 is reversed if the constitutive defense responses are compromised either by a mutation in NON EXPRESSOR OF PR-1 (NPR1) or by depleting salicylic acid due to the expression of the nahG gene. The rescue of HR cell death in hrl1 npr1 and in hrl1 nahG depends on the extent to which the constitutive systemic acquired response (SAR) is compromised. Pretreating Arabidopsis wild-type plants with SAR-inducers, before pathogen infection resulted in a significant decrease in HR cell death. Together, these results demonstrate that the preexisting SAR may serve as one form of negative feedback loop to regulate HR-associated cell death in hrl1 mutant and in the wild-type plants.  相似文献   

13.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through asalicylic acid (SA)-mediated pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in tobacco. Soil drench application of CMPA induced PR gene expression and a broad range of disease resistance without antibacterial activity in tobacco. Both analysis of CMPA's effects on NahG transgenic tobacco plants and SA measurement in wild-type plants indicated that CMPA-induced resistance enhancement does not require SA. Therefore, it is suggested that CMPA induces SAR by triggering the signaling at the same level as or downstream of SA accumulation as do both benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester and N-cyanomethyl-2-chloroisonicotinamide.  相似文献   

14.
15.
16.
Heidel AJ  Clarke JD  Antonovics J  Dong X 《Genetics》2004,168(4):2197-2206
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context.  相似文献   

17.
Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP-glucose:thiohydroximate S-glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low Km values for phenylacetothiohydroximic acid (approximately 6 microm) and UDP-glucose (approximately 50 microm) strongly suggest that thiohydroximates are in vivo substrates of UGT74B1. Insertional loss-of-function ugt74b1 mutants exhibit significantly decreased, but not abolished, glucosinolate accumulation. In addition, ugt74b1 mutants display phenotypes reminiscent of auxin overproduction, such as epinastic cotyledons, elongated hypocotyls in light-grown plants, excess adventitious rooting and incomplete leaf vascularization. Indeed, during early plant development, mutant ugt74b1 seedlings accumulate nearly threefold more indole-3-acetic acid than the wild type. Other phenotypes, however, such as chlorosis along the leaf veins, are likely caused by thiohydroximate toxicity. Analysis of UGT74B1 promoter activity during plant development reveals expression patterns consistent with glucosinolate metabolism and induction by auxin treatment. The results are discussed in the context of known mutations in glucosinolate pathway genes and their effects on auxin homeostasis. Taken together, our work provides complementary in vitro and in vivo evidence for a primary role of UGT74B1 in glucosinolate biosynthesis.  相似文献   

18.
Heidel AJ  Dong X 《Genetics》2006,173(3):1621-1628
We investigated the fitness benefits of systemic acquired resistance (SAR) in Arabidopsis thaliana using a mutational and transformational genetic approach. Genetic lines were designed to differ in the genes determining resistance signaling in a common genetic background. Two mutant lines (cpr1 and cpr5) constitutively activate SAR at different points in SAR signaling, and one mutant line (npr1) has impaired SAR. The transgenic line (NPR1-H) has enhanced resistance when SAR is activated, but SAR is still inducible similarly to wild type. The fitness benefits were also investigated under two nutrient levels to test theories that preventing pathogen damage and realized resistance benefits may be affected by nutrient availability. Under low-nutrient conditions and treatment with the pathogenic oomycete, Hyaloperonospora parasitica, wild type had a higher fitness than the mutant that could not activate SAR, demonstrating that normal inducible SAR is beneficial in these conditions; this result, however, was not found under high-nutrient conditions. The mutants with constitutive SAR all failed to show a fitness benefit in comparison to wild type under a H. parasitica pathogen treatment, suggesting that SAR is induced to prevent an excessive fitness cost.  相似文献   

19.
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA.  相似文献   

20.
Mishina TE  Zeier J 《Plant physiology》2006,141(4):1666-1675
Upon localized attack by necrotizing pathogens, plants gradually develop increased resistance against subsequent infections at the whole-plant level, a phenomenon known as systemic acquired resistance (SAR). To identify genes involved in the establishment of SAR, we pursued a strategy that combined gene expression information from microarray data with pathological characterization of selected Arabidopsis (Arabidopsis thaliana) T-DNA insertion lines. A gene that is up-regulated in Arabidopsis leaves inoculated with avirulent or virulent strains of the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) showed homology to flavin-dependent monooxygenases (FMO) and was designated as FMO1. An Arabidopsis knockout line of FMO1 proved to be fully impaired in the establishment of SAR triggered by avirulent (Psm avrRpm1) or virulent (Psm) bacteria. Loss of SAR in the fmo1 mutants was accompanied by the inability to initiate systemic accumulation of salicylic acid (SA) and systemic expression of diverse defense-related genes. In contrast, responses at the site of pathogen attack, including increases in the levels of the defense signals SA and jasmonic acid, camalexin accumulation, and expression of various defense genes, were induced in a similar manner in both fmo1 mutant and wild-type plants. Consistently, the fmo1 mutation did not significantly affect local disease resistance toward virulent or avirulent bacteria in naive plants. Induction of FMO1 expression at the site of pathogen inoculation is independent of SA signaling, but attenuated in the Arabidopsis eds1 and pad4 defense mutants. Importantly, FMO1 expression is also systemically induced upon localized P. syringae infection. This systemic up-regulation is missing in the SAR-defective SA pathway mutants sid2 and npr1, as well as in the defense mutant ndr1, indicating a close correlation between systemic FMO1 expression and SAR establishment. Our findings suggest that the presence of the FMO1 gene product in systemic tissue is critical for the development of SAR, possibly by synthesis of a metabolite required for the transduction or amplification of a signal during the early phases of SAR establishment in systemic leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号