首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses.  相似文献   

5.
6.
Wang C  Chen Y  Ku L  Wang T  Sun Z  Cheng F  Wu L 《PloS one》2010,5(11):e14068

Background

An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.

Methodology/Principal Findings

Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.

Conclusions/Significance

Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway.  相似文献   

7.
Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.  相似文献   

8.
以玉米光敏感自交系CML288和不敏感自交系黄早4为实验材料,采用长日照15 h、短日照9 h的不同光周期处理,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LCSM)观察了不同叶龄期玉米茎尖分生组织的形态学变化.结果表明,短日照能促进玉米开花,促进茎端分生组织向生殖生长转化,黄早4和CML288分别在6叶期和7叶期完成茎尖分生组织的生殖转化;而长日照则明显延迟开花,延迟茎尖分生组织向生殖生长转化,黄早4和CML288分别在8叶期和11叶期完成茎尖分生组织的生殖转化;因此光周期诱导玉米开花因光照条件和品种有一定差异,短日照条件下,光敏感和不敏感的玉米自交系开花提前,花期更接近,而长日照条件下光敏感玉米自交系开花延迟要比不敏感自交系明显得多.  相似文献   

9.
10.
11.
Abstract Phenotypic variability of Cardamine flexuosa (Cruciferae) was examined in response to different lengths of exposure to low temperature (5°C) at the juvenile stage, and to two photoperiod regimes (8 and 16 hrs day-lengths) in the subsequent growth period. The results indicated that this species had a facultative chilling or long-day requirement for flowering. The long-day and chilling treatments both caused an earlier onset of stem internode elongation. Longer chilling treatments reduced the number of nodes and increased internode length under both long and short photoperiod regimes. Prolonged chilling treatments followed by long-day photoperiod remarkably induced more numerous basal branches and inflorescences, as a result producing more siliques. Remarkable rosette leaves Were formed at the base of the main stem when partial chilling and the short-day treatment suppressed stem internode elongation. The responses to chilling and long-day treatment closely resembled the synchronized flowering of this species in spring in the field. Delayed flowering under the short-day treatment resembled size- or age-dependent flowering in late summer to autumn in the field populations.  相似文献   

12.
Photoperiod is a major factor in flower development of the opiumpoppy (Papaver somniferum L. ‘album DC’) which isa long-day plant. Predicting time to flower in field-grown opiumpoppy requires knowledge of which stages of growth are sensitiveto photoperiod and how the rate of flower development is influencedby photoperiod. The objective of this work was to determinewhen poppy plants first become sensitive to photoperiod andhow long photoperiod continues to influence the time to firstflower under consistent temperature conditions. Plants weregrown in artificially-lit growth chambers with either a 16-hphotoperiod (highly flower inductive) or a 9-h photoperiod (non-inductive).Plants were transferred at 1 to 3-d intervals from a 16- toa 9-h photoperiod andvice versa . All chambers were maintainedat a 12-h thermoperiod of 25/20 °C. Poppy plants becamesensitive to photoperiod 4 d after emergence and required aminimum of four inductive cycles (short dark periods) beforethe plant flowered. Additional inductive cycles, up to a maximumof nine, hastened flowering. After 13 inductive cycles, floweringtime was no longer influenced by photoperiod. These resultsindicate that the interval between emergence and first flowercan be divided into four phases: (1) a photoperiod-insensitivejuvenile phase (JP); (2) a photoperiod-sensitive inductive phase(PSP); (3) a photoperiod-sensitive post-inductive phase (PSPP);and (4) a photoperiod-insensitive post-inductive phase (PIPP).The minimum durations of these phases forPapaver somniferum‘album DC’ under the conditions of our experimentwere determined as 4 d, 4 d, 9 d, and 14 d, respectively. Anthesis; days to flowering; flower bud; opium poppy; Papaver somniferum L.; photoperiod; photoperiod sensitivity; predicting time to flowering; transfer  相似文献   

13.
Time of flowering is a key adaptive trait in plants and is conditioned by the interaction of genes and environmental cues including length of photoperiod, ambient temperature and vernalisation. Here we investigated the photoperiod responsiveness of summer annual-types of Brassica napus (rapeseed, canola). A population of 131 doubled haploid lines derived from a cross between European and Australian parents was evaluated for days to flowering, thermal time to flowering (measured in degree-days) and the number of leaf nodes at flowering in a compact and efficient glasshouse-based experiment with replicated short and long day treatments. All three traits were under strong genetic control with heritability estimates ranging from 0.85–0.93. There was a very strong photoperiod effect with flowering in the population accelerated by 765 degree-days in the long day versus short day treatments. However, there was a strong genetic correlation of line effects (0.91) between the long and short day treatments and relatively low genotype x treatment interaction indicating that photoperiod had a similar effect across the population. Bivariate analysis of thermal time to flowering in short and long days revealed three main effect quantitative trait loci (QTLs) that accounted for 57.7% of the variation in the population and no significant interaction QTLs. These results provided insight into the contrasting adaptations of Australian and European varieties. Both parents responded to photoperiod and their alleles shifted the population to earlier flowering under long days. In addition, segregation of QTLs in the population caused wide transgressive segregation in thermal time to flowering. Potential candidate flowering time homologues located near QTLs were identified with the aid of the Brassica rapa reference genome sequence. We discuss how these results will help to guide the breeding of summer annual types of B. napus adapted to new and changing environments.  相似文献   

14.
15.
16.
17.
The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).  相似文献   

18.
19.
The influence of temperature, photoperiod. and certain metabolities was determined for stem elongation and flowering in Scrophularia marilandica. Induction for flowering did not occur until several weeks after the beginning of rapid stem elongation. From the experiments reported it is concluded that S. marilandica is a high-temperature quantitative long-day plant. Temperatures above 20°C negate the absolute requirement for long days for flowering. Plants exposed to photoperiods as brief as 4 hours flowered, given high temperatures. Stem elongation was found to be a necessary prerequisite for flowering. The process of stem elongation was somewhat more sensitive to inhibition by low temperatures than flowering and to a great extent more sensitive than leaf formation and leaf growth. Vernalization was found to be unnecessary for stem elongation and flowering. Gibberellic acid promoted stem elongation and branching without flowering under conditions resembling cool short days. Other metabolities were tested but had no observable effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号