首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence and the absence of a prokaryote type and a eukaryotetype of acetyl-CoA carboxylase (EC 6.4.1.2 [EC] ; ACCase) were examinedin members of 28 plant families by two distinct methods: thedetection of biotinylated subunits of ACCase with a streptavidinprobe, and the detection of the accD gene, which encodes a subunitof the prokaryotic ACCase, by Southern hybridization analysis.The protein extracts of all the plants studied contained a biotinylatedpolypeptide of 220 kDa, which was probably the eukaryotic ACCase.All the plants but those belonging to Gramineae also containeda biotinylated polypeptide of ca. 35 kDa, which is a putativesubunit of the prokaryotic ACCase. In all plants but those inGramineae, the ca. 35 kDa polypeptide was found in the proteinextracts of plastids, while the 220 kDa polypeptide was absentfrom these plastid extracts. The plastid extracts of the plantsin Gramineae contained the 220 kDa polypeptide, as did the homogenatesof the leaves. Southern hybridization analysis demonstratedthat all the plants but those in the Gramineae contained theaccD gene. These findings suggest that most higher plants havethe prokaryotic ACCase in the plastids and the eukaryotic ACCasein the cytosol. Only Gramineae plants might contain the eukaryoticACCases both in the plastids and in the cytosol. The originof the plastid-located eukaryotic ACCase in Gramineae is discussedas the first possible example of substitution of a plastid geneby a nuclear gene for a non-ribosomal component. 4Present address: Plant-Growth Regulation Laboratory, The Instituteof Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako,351-01 Japan 5Present address: Laboratory of Plant Molecular Biology, Schoolof Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya,464-01 Japan  相似文献   

2.
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts’ redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.  相似文献   

3.
In Escherichia coli, synthesis of the malonyl coenzyme A (malonyl-CoA) required for membrane lipid synthesis is catalyzed by acetyl-CoA carboxylase, a large complex composed of four subunits. The subunit proteins are needed in a defined stoichiometry, and it remains unclear how such production is achieved since the proteins are encoded at three different loci. Meades and coworkers (G. Meades, Jr., B. K. Benson, A. Grove, and G. L. Waldrop, Nucleic Acids Res. 38:1217–1227, 2010, doi:http://dx.doi.org/10.1093/nar/gkp1079) reported that coordinated production of the AccA and AccD subunits is due to a translational repression mechanism exerted by the proteins themselves. The AccA and AccD subunits form the carboxyltransferase (CT) heterotetramer that catalyzes the second partial reaction of acetyl-CoA carboxylase. Meades et al. reported that CT tetramers bind the central portions of the accA and accD mRNAs and block their translation in vitro. However, long mRNA molecules (500 to 600 bases) were required for CT binding, but such long mRNA molecules devoid of ribosomes seemed unlikely to exist in vivo. This, plus problematical aspects of the data reported by Meades and coworkers, led us to perform in vivo experiments to test CT tetramer-mediated translational repression of the accA and accD mRNAs. We report that increased levels of CT tetramer have no detectable effect on translation of the CT subunit mRNAs.  相似文献   

4.
In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized.  相似文献   

5.
6.
7.
Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon.  相似文献   

8.
Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to ~36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.  相似文献   

9.
10.
11.
The plastid acetyl-coenzyme A carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis and in most plants is present as a heteromeric complex of at least four different protein subunits: the biotin carboxylase (BC), the biotin carboxyl carrier protein, and the alpha and beta subunits of the carboxyltransferase. To gain insight into the subunit organization of this heteromeric enzyme complex and to further evaluate the role of ACCase in regulating fatty acid synthesis, BC expression was altered in transgenic plants. Tobacco (Nicotiana tabacum) was transformed with antisense-expression and overexpression tobacco BC constructs, which resulted in the generation of plants with BC levels ranging from 20 to 500% of wild-type levels. Tobacco plants containing elevated or moderate decreases in leaf BC were phenotypically indistinguishable from wild-type plants. However, plants with less than 25% of wild-type BC levels showed severely retarded growth when grown under low-light conditions and a 26% lower leaf fatty acid content than wild-type plants. A comparison of leaf BC and biotin carboxyl carrier protein levels in plants with elevated and decreased BC expression revealed that these two subunits of the plastid ACCase are not maintained in a strict stoichiometric ratio.  相似文献   

12.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

13.
The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3′-hydroxylase (CrtZ) and β,β-carotenoid 4,4′-ketolase (4,4′-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8 %) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2 % of total carotenoids), astaxanthin monoester (18.2 %), and the free forms of astaxanthin (10.0 %) and the other ketocarotenoids (17.5 %), which indicated that artificial ketocarotenoids corresponded to 94.9 % of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8 %) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.  相似文献   

14.
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of ∼600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.  相似文献   

15.
Consistent with their origin from cyanobacteria, plastids (chloroplasts) perform protein biosynthesis on bacterial-type 70S ribosomes. The plastid genomes of seed plants contain a conserved set of ribosomal protein genes. Three of these have proven to be nonessential for translation and, thus, for cellular viability: rps15, rpl33, and rpl36. To help define the minimum ribosome, here, we examined whether more than one of these nonessential plastid ribosomal proteins can be removed from the 70S ribosome. To that end, we constructed all possible double knockouts for the S15, L33, and L36 ribosomal proteins by stable transformation of the tobacco (Nicotiana tabacum) plastid genome. We find that, although S15 and L33 function in different ribosomal particles (30S and 50S, respectively), their combined deletion from the plastid genome results in synthetic lethality under autotrophic conditions. Interestingly, the lethality can be overcome by growth under elevated temperatures due to an improved efficiency of plastid ribosome biogenesis. Our results reveal functional interactions between protein and RNA components of the 70S ribosome and uncover the interdependence of the biogenesis of the two ribosomal subunits. In addition, our findings suggest that defining a minimal set of plastid genes may prove more complex than generally believed.  相似文献   

16.
Lipids from microalgae have become a valuable product with applications ranging from biofuels to human nutrition. While changes in fatty acid (FA) content and composition under nitrogen limitation are well documented, the involved molecular mechanisms are poorly understood. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the FA synthesis and elongation pathway. Plastidial and cytosolic ACCases provide malonyl-CoA for de novo FA synthesis in the plastid and FA elongation in the endoplasmic reticulum, respectively. The present study aimed at investigating the expression of plastidial and cytosolic ACCase in Chromera velia and Isochrysis aff. galbana (TISO) and their impact on FA content and elongation level when grown under nitrogen-deplete conditions. In C. velia, plastidial ACCase was significantly upregulated during nitrogen starvation and with culture age, strongly correlating with increased FA content. Conversely, plastidial ACCase of I. aff. galbana was not differentially expressed in nitrogen-deplete cultures, but upregulated during the logarithmic phase of nitrogen-replete cultures. In contrast to plastidial ACCase, the cytosolic ACCase of C. velia was downregulated with culture age and nitrogen-starvation, strongly correlating with an increase in medium-chain FAs. In conclusion, the expression of plastidial and cytosolic ACCase changed with growth phase and nutrient status in a species-specific manner and nitrogen limitation did not always result in FA accumulation.  相似文献   

17.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

18.
乙酰辅酶A羧化酶是一个生物素羧化酶,它所催化的反应是脂肪酸生物合成中的第一个关键步骤。禾本科植物叶绿体中的乙酰辅酶A羧化酶是两类禾本科除草剂的靶蛋白。从抗除草剂拿捕净和感拿捕净的谷子(Setaria italicaBeauv.)中克隆了两个乙酰辅酶A羧化酶的全长cDNA,分别命名为foxACC-R和foxACC-S,它们推导的蛋白质均编码2 321个氨基酸,然而在第1 780个氨基酸处,foxACC-R编码亮氨酸,而foxACC-S编码异亮氨酸。采用生物信息学方法,我们推断这个cDNA编码的是叶绿体中的乙酰辅酶A羧化酶,并预测了它的功能域和保守区。通过这两个cDNA编码的氨基酸序列与其他乙酰辅酶A羧化酶的序列比较得出结论,亮氨酸/异亮氨酸位点可能是APPs和CHDs两类除草剂作用的关键位点。Southern 杂交分析的结果显示,该基因在谷子基因组中只有一个拷贝。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号