首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Intratumor heterogeneity is a key driver for local relapse and treatment failure. Thus, using multifocal prostate cancer as a model to investigate tumor inter-clonal relationships and tumor evolution could aid in our understanding of drug resistance. Previous studies discovered genomic alterations by comparing hormone-sensitive prostate cancer (HSPC) with castration-resistant prostate cancer (CRPC) in large cohorts. However, most studies did not sequentially sample tumors from the same patient. In our study, we performed whole-exome sequencing (WES) on 14 specimens from five locally relapsed patients before and after androgen-deprivation therapy. We described the landscape of genomic alterations before and after treatment and identified critical driver events that could have contributed to the evolution of CRPC. In addition to confirming known cancer genes such as TP53 and CDK12, we also identified new candidate genes that may play a role in the progression of prostate cancer, including MYO15A, CHD6 and LZTR1. At copy number alteration (CNA) level, gain of 8q24.13-8q24.3 was observed in 60% of patients and was the most commonly altered locus in both HSPC and CRPC tumors. Finally, utilizing phylogenetic reconstruction, we explored the clonal progression pattern from HSPC to CRPC in each patient. Our findings highlight the complex and heterogeneous mechanisms underlying the development of drug resistance, and underscore the potential value of monitoring tumor clonal architectures during disease progression in a clinical setting.  相似文献   

8.
9.
10.
Bromodomain-containing protein 4 (BRD4) and phosphatidylinositol 3-kinase (PI3K) are both key oncogenic proteins in human prostate cancer. In the current study, we examined the anti-prostate cancer cell activity by SF2523, a BRD4 and PI3K dual inhibitor. We showed that SF2523 potently inhibited survival and proliferation of the primary human prostate cancer cells. SF2523 induced profound apoptosis activation in prostate cancer cells. The dual inhibitor was yet non-cytotoxic to the prostate epithelial cells. At the molecular level, SF2523 downregulated BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and almost blocked AKT-S6K1 activation in prostate cancer cells. In vivo, SF2523 intraperitoneal administration at the well-tolerated dose inhibited human prostate cancer xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and AKT-S6K1 activation were inhibited in SF2523-treated tumors. Together, dual inhibition of BRD4 and PI3K by SF2523 suppresses human prostate cancer cell growth in vitro and in vivo.  相似文献   

11.
12.
The Wnt/β-catenin signaling pathway has been identified as one of the predominantly upregulated pathways in castration-resistant prostate cancer (CRPC). However, whether targeting the β-catenin pathway will prove effective as a CRPC treatment remains unknown. Polo-like kinase 1 (Plk1) is a critical regulator in many cell cycle events, and its level is significantly elevated upon castration of mice carrying xenograft prostate tumors. Indeed, inhibition of Plk1 has been shown to inhibit tumor growth in several in vivo studies. Here, we show that Plk1 is a negative regulator of Wnt/β-catenin signaling. Plk1 inhibition or depletion enhances the level of cytosolic and nuclear β-catenin in human prostate cancer cells. Furthermore, inhibition of Wnt/β-catenin signaling significantly potentiates the antineoplastic activity of the Plk1 inhibitor BI2536 in both cultured prostate cancer cells and CRPC xenograft tumors. Mechanistically, axin2, a negative regulator of the β-catenin pathway, serves as a substrate of Plk1, and Plk1 phosphorylation of axin2 facilitates the degradation of β-catenin by enhancing binding between glycogen synthase kinase 3β (GSK3β) and β-catenin. Plk1-phosphorylated axin2 also exhibits resistance to Cdc20-mediated degradation. Overall, this study identifies a novel Plk1-Wnt signaling axis in prostate cancer, offering a promising new therapeutic option to treat CRPC.  相似文献   

13.
14.
15.
《Endocrine practice》2021,27(9):874-880
ObjectiveThe clinical significance of the YY1 gene mutation and expression in pancreatic neuroendocrine tumors (PNETs) remains unknown. Therefore, this study aimed to comprehensively analyze the somatic mutation of YY1 in the different subtypes of PNETs.MethodsA total of 143 PNETs were assessed by Sanger sequencing to identify the somatic mutation of YY1 gene in various subtypes of PNETs. YY1 protein expression was examined in 103 PNETs by immunohistochemical staining and western blot. Gene mutation and its protein expression were correlated with clinicopathologic features.ResultsA recurrent mutation (chr14:100743807C>G) in the YY1 gene was identified in 15 of 83 insulinomas (18%) and in only 1 of 60 noninsulinoma PNETs (1.7%) (P = .0045). The YY1 mutation was not found in MEN1-associated insulinomas. The YY1 mutation in insulinomas was correlated with older age and lower serum glucose levels (age, 57 vs 42.5 years, P = .006; blood glucose, 25.2 vs 33.6 mg/dL, P = .008). YY1 protein expression was found in 100 of 103 PNETs, although expression was weaker in metastases than in localized tumors (P = .036). The stronger expression of YY1 protein was associated with favorable disease-free survival of patients with PNETs (log-rank, P = .011; n = 70). Multivariable statistical analysis showed that YY1 protein expression could be an independent predictor of prognosis.ConclusionThe hotspot YY1 mutation mostly occurred in insulinomas and rarely in noninsulinoma PNETs. The stronger YY1 protein expression was correlated with the better prognosis of PNETs patients.  相似文献   

16.
Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient’s tumor in order to select optimal therapy.  相似文献   

17.
18.
19.
Background Studies have shown that AR-V7 may be correlated with the poor prognosis of castration resistant prostate cancer (CRPC), however, clinicopathological characteristics of AR-V7 have not been fully elucidated.ObjectiveThis study aimed at evaluating the clinicopathological features of AR-V7 in CRPC patients.Materials and methodsTo evaluate the clinicopathological features of AR-V7 in CRPC patients. A search of PubMed, Embase, and Web of Science was performed using the keywords prostate cancer, prostate tumor, prostate neoplasm, prostate carcinoma, AR-V7, AR3, androgen receptor splicing variant-7, or androgen receptor-3. Twenty-four trials published by February 2020 were included in this study.ResultsThe proportion of Gleason score ≥ 8 was found to be significantly higher in AR-V7-positive CRPC (69.5%) than negative (54.9%) (OR 1.68, 95% CI 1.25–2.25, p < 0.001), while the rates of T3/T4 stage (OR 1.16, 95% CI 0.60–2.24, p = 0.65) and N1 stage (OR 0.99, 95% CI 0.65–1.51, p = 0.96) were not statistically correlated with AR-V7 status. The AR-V7-positive patients exhibited a significantly higher proportion of any site metastasis (61.3% versus 35.0%; OR 2.19, 95% CI 1.57–3.05, p < 0.001) and bone metastasis (81.7% versus 69.0%; OR 1.97, 95% CI 1.44–2.69, p < 0.001), and a trend close to significance was expected in visceral metastasis (28.8% versus 22.1%; OR 1.29, 95% CI 0.96–1.74, p = 0.09). Incidences of pain in AR-V7-positive CRPC (54.6%) were significantly higher than in negative CRPC (28.1%; OR 4.23, 95% CI 2.52–7.10, p < 0.001), line with worse ECOG performance status (56.7% versus 35.0%, OR 2.18, 95% CI 1.51–3.16, P < 0.001). Limitations of the study include differences in sample sizes and designs, AR-V7 detection assays, as well as disease characteristics of the included studies.ConclusionsAR-V7 positivity is associated with a higher Gleason score, bone or any site metastasis, pain and worse ECOG performance scores in CRPC. However, it is not correlated with tumor stage or lymph node metastasis. More studies are needed to confirm these findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号