首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic ribonucleases H of known sequence are composed of an RNase H domain similar in size and sequence to that of Escherichia coli RNase HI and additional domains of unknown function. The RNase H1 of Saccharomyces cerevisiae has such an RNase H domain at its C-terminus. Here we show that the N-terminal non-RNase H portion of the yeast RNase H1 binds tightly to double-stranded RNA (dsRNA) and RNA-DNA hybrids even in the absence of the RNase H domain. Two copies of a sequence with limited similarity to the dsRNA-binding motif are present in this N-terminus. When the first of these sequences is altered, the protein no longer binds tightly to dsRNA and exhibits an increase in RNase H activity. Unlike other dsRNA-binding proteins, increasing the Mg2+ concentration from 0.5 mM to 5 mM inhibits binding of RNase H1 to dsRNA; yet a protein missing the RNase H domain binds strongly to dsRNA even at the higher Mg2+ concentration. These results suggest that binding to dsRNA and RNase H activity are mutually exclusive, and the Mg2+ concentration is critical for switching between the activities. Changes in the Mg2+ concentration or proteolytic severing of the dsRNA-binding domain could alter the activity or location of the RNase H and may govern access of the enzyme to the substrate. Sequences similar to the dsRNA-binding motif are present in other eukaryotic RNases H and the transactivating protein of cauliflower mosaic virus, suggesting that these proteins may also bind to dsRNA.  相似文献   

2.
DNase I and proteinase K are two enzymes commonly used in the purification of highly polymerized RNA. In the presence of EDTA DNase I is rapidly inactivated by proteinase K while in 10 mm Ca2+ DNase is totally immune to proteinase K inactivation even at protease concentrations of up to 1 mg/ml. RNase A, a common contaminant of “RNase-free” DNase was inactivated by proteinase K in the presence or absence of Ca2+. Treatment of DNase I with proteinase K in the presence of Ca2+ selectively removed RNase A activity as judged by rRNA and poly(A+ RNA ribosomal RNA degradation monitored by sucrose gradient centrifugation. These results suggest that (i) DNase A and proteinase K can be used together in the presence of Ca2+ to obtain better digestion of nucleoprotein complexes, and (ii) proteinase K treatment of Ca2+ DNase can be used to selectively remove contaminating RNase.  相似文献   

3.
Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA.  相似文献   

4.
RNase E is a major intracellular endoribonuclease in many bacteria and participates in most aspects of RNA processing and degradation. RNase E requires a divalent metal ion for its activity. We show that only Mg2+ and Mn2+ will support significant rates of activity in vitro against natural RNAs, with Mn2+ being preferred. Both Mg2+ and Mn2+ also support cleavage of an oligonucleotide substrate with similar kinetic parameters for both ions. Salts of Ni2+ and Zn2+ permitted low levels of activity, while Ca2+, Co3+, Cu2+, and Fe2+ did not. A mutation to one of the residues known to chelate Mg2+, D346C, led to almost complete loss of activity dependent on Mg2+; however, the activity of the mutant enzyme was fully restored by the presence of Mn2+ with kinetic parameters fully equivalent to those of wild-type enzyme. A similar mutation to the other chelating residue, D303C, resulted in nearly full loss of activity regardless of metal ion. The properties of RNase E D346C enabled a test of the ionic requirements of RNase E in vivo. Plasmid shuffling experiments showed that both rneD303C (i.e., the rne gene encoding a D-to-C change at position 303) and rneD346C were inviable whether or not the selection medium was supplied with MnSO4, implying that RNase E relies on Mg2+ exclusively in vivo.  相似文献   

5.
Three distinct nuclease activities, degrading double-stranded substrates, were isolated from the ribosomal salt wash fraction of Ehrlich ascites tumor cells. One of them is an absolutely Mn2+-dependent RNase H, capable of degrading the polyribonucleotide strand of a poly(A) · poly(dT) hybrid only. The other two nuclease activities are: a Mg2+-dependent RNase H and a Mn2+-dependent ribonuclease, specific for double-stranded RNA. These two activities were inseparable by DEAE-cellulose and phosphocellulose chromatography and both were completely inhibited by 20 mmN-ethymaleimide. It is possible that one protein molecule is responsible for the two activities, depending on the nature of the metal ion, though the existence of two different enzyme molecules is not excluded. The three activities are most probably of extranucleolar origin. A function for the double-stranded RNA-specific enzyme is suggested in the processes regulating protein synthesis. The role of the RNase H activities isolated from the ribosomal salt wash fraction is unclear.  相似文献   

6.
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.  相似文献   

7.
The archaea possess RNase H proteins that share features of both prokaryotic and eukaryotic forms. Although the Sulfolobus RNase HI has been reported to have unique structural and biochemical properties, its RNase HII has not yet been investigated and its biochemical properties remain unknown. In the present study, we have characterized the ST0519 RNase HII from S. tokodaii as a new form. The enzyme utilized hybrid RNA/DNA as a substrate and had an optimal temperature between 37 and 50°C. The activity of wild-type protein was stimulated by Mn2+, whereas this cation significantly inhibited the activity of C-terminal truncated mutant proteins. A series of mutation assays revealed a regulatory C-terminal tail in the S. tokodaii RNase HII. One mutant, ST0519 (residues 1–195), retained only partial activity, while ST0519 (residues 1–196) completely lost its activity. Based on the presumed structure, the C-terminus might form a short α-helix in which two residues, I195 and L196, are essential for the cleavage activity. Our data suggest that the C-terminal α-helix is likely involved in the Mn2+-dependent substrate cleavage activity through stabilization of a flexible loop structure. Our findings offer important clues for further understanding the structure and function of both archaeal and eukaryotic RNase HII.  相似文献   

8.
BACKGROUND: Aquifex aeolicus Ribonuclease III (Aa-RNase III) belongs to the family of Mg(2+)-dependent endonucleases that show specificity for double-stranded RNA (dsRNA). RNase III is conserved in all known bacteria and eukaryotes and has 1-2 copies of a 9-residue consensus sequence, known as the RNase III signature motif. The bacterial RNase III proteins are the simplest, consisting of two domains: an N-terminal endonuclease domain, followed by a double-stranded RNA binding domain (dsRBD). The three-dimensional structure of the dsRBD in Escherichia coli RNase III has been elucidated; no structural information is available for the endonuclease domain of any RNase III. RESULTS: We present the crystal structures of the Aa-RNase III endonuclease domain in its ligand-free form and in complex with Mn(2+). The structures reveal a novel protein fold and suggest a mechanism for dsRNA cleavage. On the basis of structural, genetic, and biological data, we have constructed a hypothetical model of Aa-RNase III in complex with dsRNA and Mg(2+) ion, which provides the first glimpse of RNase III in action. CONCLUSIONS: The functional Aa-RNase III dimer is formed via mainly hydrophobic interactions, including a "ball-and-socket" junction that ensures accurate alignment of the two monomers. The fold of the polypeptide chain and its dimerization create a valley with two compound active centers at each end of the valley. The valley can accommodate a dsRNA substrate. Mn(2+) binding has significant impact on crystal packing, intermolecular interactions, thermal stability, and the formation of two RNA-cutting sites within each compound active center.  相似文献   

9.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

10.
11.
The present paper describes intracellular changes in ribonuclease specific activity during Ca2+-induced sporangium formation in the water mold Achlya bisexualis. The enzymes undergo a decrease in activity prior to crosswall formation followed by an increase in activity during spore cleavage. As spore discharge occurs the RNase activity again decreases. A large percentage of the nuclease activity is associated with a lysosomal-like fraction of the cell, but there is also considerably activity associated with nuclear and microsomal fractions. Addition of cycloheximide or actinomycin D at various times during development prevents further decrease or increase in the enzyme activity. Mixing of cell extracts from different developmental stages provides evidence that inhibitors or activators of the enzyme activity are not responsible for the activity levels evident at the different stages. There is a change in the total levels of presumptive mRNA during Ca2+-induced sporangial formation which appears to be associated with the patterns of RNase activity. Utilizing total cellular RNA and Poly(A)+ RNA with the crude ribonuclease preparations, no substrate specificity could be ascertained.  相似文献   

12.
O Pines  H J Yoon    M Inouye 《Journal of bacteriology》1988,170(7):2989-2993
The gene for the double-stranded RNA (dsRNA)-specific RNase III of Escherichia coli was expressed in Saccharomyces cerevisiae to examine the effects of this RNase activity on the yeast. Induction of the RNase III gene was found to cause abnormal cell morphology and cell death. Whereas double-stranded killer RNA is degraded by RNase III in vitro, killer RNA, rRNA, and some mRNAs were found to be stable in vivo after induction of RNase III. Variants selected for resistance to RNase III induction were isolated at a frequency of 4 X 10(-5) to 5 X 10(-5). Ten percent of these resistant strains had concomitantly lost the capacity to produce killer toxin and M dsRNA while retaining L dsRNA. The genetic alteration leading to RNase resistance was localized within the RNase III-coding region but not in the yeast chromosome. These results indicate that S. cerevisiae contains some essential RNA which is susceptible to E. coli RNase III.  相似文献   

13.
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.  相似文献   

14.
Reliable determination of RNA secondary structure depends on both computer algorithms and experimental probing of nucleotides in single- or double-stranded conformation. Here we describe the exploitation of the endonucleolytic activity of the Bacillus subtilis enzyme RNase J1 as a probe of RNA structure. RNase J1 cleaves in single-stranded regions and, in vitro at least, the enzyme has relatively relaxed nucleotide specificity. We confirmed the feasibility of the approach on an RNA of known structure, B. subtilis tRNAThr. We then used RNase J1 to solve the secondary structure of the 5′ end of the hbs mRNA. Finally, we showed that RNase J1 can also be used in footprinting experiments by probing the interaction between the 30S ribosomal subunit and the Shine–Dalgarno element of the hbs mRNA.  相似文献   

15.
16.
The recombinant enzyme binase II was isolated from the culture liquid of Bacillus subtilis 3922 transformed with the pJF28 plasmid bearing the birB gene. The procedure of the enzyme purification included precipitation by polyethylene glycol with subsequent chromatography on DEAE-cellulose, heparin-Sepharose, and Toyopearl TSK-gel. The enzyme was purified 142-fold yielding a preparation with specific activity 1633 U/mg. The molecular weight of binase II is 30 kD. The enzyme is activated by Mg2+ and virtually completely inhibited by EDTA. The pH optimum for the reaction of RNA hydrolysis is 8.5. The properties of the enzyme are close to those of RNase Bsn from B. subtilis. The character of cleaving of synthetic single- and double-stranded polyribonucleotides by binase II suggests that the enzyme binds the substrate in the helix conformation, and its catalytic mechanism is close to that of RNase VI from cobra venom.  相似文献   

17.
Pseudo first order rate constants (k′) have been measured for the RNase A catalyzed hydrolysis of uridylyl (3′–5′) uridine at several ionic strengths and compositions. The k′ values are independent of Mg2+ concentration between 0 and 10 mM. This shows that for hydrolysis of RNA, in which Mg2+ concentration does change k′, the perturbation must be through binding of Mg2+ to the substrate RNA rather than to the enzyme RNase.  相似文献   

18.
19.
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes.  相似文献   

20.
RNase R is a highly processive, hydrolytic 3′-5′ exoribonuclease belonging to the RNB/RNR superfamily which plays significant roles in RNA metabolism in bacteria. The enzyme was observed to be essential for growth of the psychrophilic Antarctic bacterium Pseudomonas syringae Lz4W at a low temperature. We present results here pertaining to the biochemical properties of RNase R and the RNase R-encoding gene (rnr) locus from this bacterium. By cloning and expressing a His6-tagged form of the P. syringae RNase R (RNase RPs), we show that the enzyme is active at 0 to 4°C but exhibits optimum activity at ∼25°C. The enzyme is heat labile in nature, losing activity upon incubation at 37°C and above, a hallmark of many psychrophilic enzymes. The enzyme requires divalent cations (Mg2+ and Mn2+) for activity, and the activity is higher in 50 to 150 mM KCl when it largely remains as a monomer. On synthetic substrates, RNase RPs exhibited maximum activity on poly(A) and poly(U) in preference over poly(G) and poly(C). The enzyme also degraded structured malE-malF RNA substrates. Analysis of the cleavage products shows that the enzyme, apart from releasing 5′-nucleotide monophosphates by the processive exoribonuclease activity, produces four-nucleotide end products, as opposed to two-nucleotide products, of RNA chain by Escherichia coli RNase R. Interestingly, three ribonucleotides (ATP, GTP, and CTP) inhibited the activity of RNase RPs in vitro. The ability of the nonhydrolyzable ATP-γS to inhibit RNase RPs activity suggests that nucleotide hydrolysis is not required for inhibition. This is the first report on the biochemical property of a psychrophilic RNase R from any bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号