首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Computational circuit design with desired functions in a living cell is a challenging task in synthetic biology. To achieve this task, numerous methods that either focus on small scale networks or use evolutionary algorithms have been developed. Here, we propose a two-step approach to facilitate the design of functional circuits. In the first step, the search space of possible topologies for target functions is reduced by reverse engineering using a Boolean network model. In the second step, continuous simulation is applied to evaluate the performance of these topologies. We demonstrate the usefulness of this method by designing an example biological function: the SOS response of E. coli. Our numerical results show that the desired function can be faithfully reproduced by candidate networks with different parameters and initial conditions. Possible circuits are ranked according to their robustness against perturbations in parameter and gene expressions. The biological network is among the candidate networks, yet novel designs can be generated. Our method provides a scalable way to design robust circuits that can achieve complex functions, and makes it possible to uncover design principles of biological networks.  相似文献   

7.
A novel strategy to finely control a large metabolic flux by using a “metabolic transistor” approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The “metabolic transistor” strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount.  相似文献   

8.
The ability to modulate gene expression is an important genetic tool in systems biology and biotechnology. Here, we demonstrate that a previously published easy and fast PCR-based method for modulating gene expression in lactic acid bacteria is also applicable to Corynebacterium glutamicum. We constructed constitutive promoter libraries based on various combinations of a previously reported C. glutamicum -10 consensus sequence (gngnTA(c/t)aaTgg) and the Escherichia coli -35 consensus, either with or without an AT-rich region upstream. A promoter library based on consensus sequences frequently found in low-GC Gram-positive microorganisms was also included. The strongest promoters were found in the library with a -35 region and a C. glutamicum -10 consensus, and this library also represents the largest activity span. Using the alternative -10 consensus TATAAT, which can be found in many other prokaryotes, resulted in a weaker but still useful promoter library. The upstream AT-rich region did not appear to affect promoter strength in C. glutamicum. In addition to the constitutive promoters, a synthetic inducible promoter library, based on the E. coli lac-promoter, was constructed by randomizing the 17-bp spacer between -35 and -10 consensus sequences and the sequences surrounding these. The inducible promoter library was shown to result in β-galactosidase activities ranging from 284 to 1,665 Miller units when induced by IPTG, and the induction fold ranged from 7–59. We find that the synthetic promoter library (SPL) technology is convenient for modulating gene expression in C. glutamicum and should have many future applications, within basic research as well as for optimizing industrial production organisms.  相似文献   

9.
Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.  相似文献   

10.
11.
12.
The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter Ptrc resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, PA1lacO-1, induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density.  相似文献   

13.
We constructed a library of synthetic promoters for Lactococcus lactis in which the known consensus sequences were kept constant while the sequences of the separating spacers were randomized. The library consists of 38 promoters which differ in strength from 0.3 up to more than 2,000 relative units, the latter among the strongest promoters known for this organism. The ranking of the promoter activities was somewhat different when assayed in Escherichia coli, but the promoters are efficient for modulating gene expression in this bacterium as well. DNA sequencing revealed that the weaker promoters (which had activities below 5 relative units) all had changes either in the consensus sequences or in the length of the spacer between the −35 and −10 sequences. The promoters in which those features were conserved had activities from 5 to 2,050 U, which shows that by randomizing the spacers, at least a 400-fold change in activity can be obtained. Interestingly, the entire range of promoter activities is covered in small steps of activity increase, which makes these promoters very suitable for quantitative physiological studies and for fine-tuning of gene expression in industrial bioreactors and cell factories.  相似文献   

14.
15.
The ability to solubilize lignocellulose makes certain ionic liquids (ILs) very effective reagents for pretreating biomass prior to its saccharification for biofuel fermentation. However, residual IL in the aqueous sugar solution can inhibit the growth and function of biofuel-producing microorganisms. In E. coli this toxicity can be partially overcome by the heterologous expression of an IL efflux pump encoded by eilA from Enterobacter lignolyticus. In the present work, we used microarray analysis to identify native E. coli IL-inducible promoters and develop control systems for regulating eilA gene expression. Three candidate promoters, PmarR’, PydfO’, and PydfA’, were selected and compared to the IPTG-inducible PlacUV5 system for controlling expression of eilA. The PydfA’ and PmarR’ based systems are as effective as PlacUV5 in their ability to rescue E. coli from typically toxic levels of IL, thereby eliminating the need to use an IPTG-based system for such tolerance engineering. We present a mechanistic model indicating that inducible control systems reduce target gene expression when IL levels are low. Selected-reaction monitoring mass spectrometry analysis revealed that at high IL concentrations EilA protein levels were significantly elevated under the control of PydfA’ and PmarR’ in comparison to the other promoters. Further, in a pooled culture competition designed to determine fitness, the strain containing pPmarR’-eilA outcompeted strains with other promoter constructs, most significantly at IL concentrations above 150 mM. These results indicate that native promoters such as PmarR’ can provide effective systems for regulating the expression of heterologous genes in host engineering and simplify the development of industrially useful strains.  相似文献   

16.
17.
Waters impacted by fecal pollution can exact high risks to human health and can result in financial losses due to closures of water systems used for recreation and for harvesting seafood. Identifying the sources of fecal pollution in water is paramount in assessing the potential human health risks involved as well as in assessing necessary remedial action. Recently, various researchers have used the ribotyping method to identify sources of bacterial indicators (Escherichia coli and enterococci) in environmental waters. While these studies have identified genotypic differences between human- and animal-derived indicators that are capable of differentiating organisms isolated from humans and various animal hosts, most have focused on organisms collected from a confined geographic area and have not addressed the question of whether these ribotype profiles are watershed specific or if they can be applied universally to organisms from other geographic locations. In this study, E. coli isolates were obtained from humans, beef cattle, dairy cattle, swine, and poultry from locations in northern, central, and southern Florida and were subjected to ribotyping analysis. The intent was to determine (i) if ribotype profiles are capable of discriminating the source of E. coli at the host species level and (ii) if the resulting fingerprints are uniform over an extended geographic area or if they can be applied only to a specific watershed. Our research indicated that, using a single restriction enzyme (HindIII), the ribotyping procedure is not capable of differentiating E. coli isolates from the different animal species sampled in this study. Results indicate, however, that this procedure can still be used effectively to differentiate E. coli as being either human or animal derived when applied to organisms isolated from a large geographic region.  相似文献   

18.
19.
20.
Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of “scar” DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号