首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Sortase A (SrtA) is required to anchor neuraminidase, beta-galactosidase, and possibly other LPXTG motif proteins to the pneumococcal cell surface. We examined the role of SrtA in Streptococcus pneumoniae nasopharyngeal (NP) colonization in the chinchilla model. The srtA mutant colonized the nasopharynx at a significantly lower level than the D39 parent strain during the second and third week of the carriage, and was eliminated from nasopharynx one week earlier than the D39 pneumococci. Our data indicate that SrtA contributes to pneumococcal NP colonization in this animal model.  相似文献   

2.
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.  相似文献   

3.
Since nasopharyngeal carriage of pneumococcus precedes invasive pneumococcal disease, characteristics of carriage isolates could be incorrectly assumed to reflect those of invasive isolates. While most pneumococci express a capsular polysaccharide, nontypeable pneumococci are sometimes isolated. Carriage nontypeables tend to encode novel surface proteins in place of a capsular polysaccharide synthetic locus, the cps locus. In contrast, capsular polysaccharide is believed to be indispensable for invasive pneumococcal disease, and nontypeables from population-based invasive pneumococcal disease surveillance have not been extensively characterized. We received 14,328 invasive pneumococcal isolates through the Active Bacterial Core surveillance program during 2006–2009. Isolates that were nontypeable by Quellung serotyping were characterized by PCR serotyping, sequence analyses of the cps locus, and multilocus sequence typing. Eighty-eight isolates were Quellung-nontypeable (0.61%). Of these, 79 (89.8%) contained cps loci. Twenty-two nontypeables exhibited serotype 8 cps loci with defects, primarily within wchA. Six of the remaining nine isolates contained previously-described aliB homologs in place of cps loci. Multilocus sequence typing revealed that most nontypeables that lacked capsular biosynthetic genes were related to established non-encapsulated lineages. Thus, invasive pneumococcal disease caused by nontypeable pneumococcus remains rare in the United States, and while carriage nontypeables lacking cps loci are frequently isolated, such nontypeable are extremely rare in invasive pneumococcal disease. Most invasive nontypeable pneumococci possess defective cps locus genes, with an over-representation of defective serotype 8 cps variants.  相似文献   

4.
Background Nasopharyngeal colonization by Streptococcus pneumoniae precedes pneumococcal disease. Elucidation of procedures to prevent or eradicate nasopharyngeal carriage in a model akin to the human would help to diminish the incidence of both pneumonia and invasive pneumococcal disease. Methods We conducted a survey of the nasopharynx of infant rhesus macaques from our breeding colony, in search of natural carriers of S. pneumoniae. We also attempted experimental induction of colonization, by nasopharyngeal instillation of a human S. pneumoniae strain (19F). Results None of 158 colony animals surveyed carried S. pneumoniae in the nasopharynx. Colonization was induced in eight of eight infant rhesus by nasopharyngeal instillation and lasted 2 weeks in 100% of the animals and 7 weeks in more than 60%. Conclusion Rhesus macaques are probably not natural carriers of S. pneumoniae. The high rate and duration of colonization obtained in our experiments indicates that the rhesus macaque will serve as a human‐like carriage model.  相似文献   

5.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.  相似文献   

6.
While nasopharyngeal sampling is the gold standard for the detection of Streptococcus pneumoniae carriage, historically seen, saliva sampling also seems highly sensitive for pneumococcal detection. We investigated S. pneumoniae carriage in saliva from fifty schoolchildren by conventional and molecular methods. Saliva was first culture-enriched for pneumococci, after which, DNA was extracted from all bacterial growth and tested by quantitative-PCR (qPCR) for pneumococcus-specific genes lytA and piaA. Next, serotype composition of the samples was determined by serotype-specific qPCRs, conventional-PCRs (cPCR) and sequencing of cPCR amplicons. Although only 2 (4%) of 50 samples were positive by conventional diagnostic culture, 44 (88%) were positive for pneumococci by qPCR. In total, we detected the presence of at least 81 pneumococcal strains representing 20 serotypes in samples from 44 carriers with 23 carriers (52%) positive for multiple (up to 6) serotypes. The number of serotypes detected per sample correlated with pneumococcal abundance. This study shows that saliva could be used as a tool for future pneumococcal surveillance studies. Furthermore, high rates of pneumococcal carriage and co-carriage of multiple pneumococcal strains together with a large number of serotypes in circulation suggests a ubiquitous presence of S. pneumoniae in saliva of school-aged children. Our results also suggest that factors promoting pneumococcal carriage within individual hosts may weaken competitive interactions between S. pneumoniae strains.  相似文献   

7.
Incidence of pneumococcal disease is disproportionally high in infants and elderly. Nasopharyngeal colonisation by Streptococcus pneumoniae is considered a prerequisite for disease but unlike in children, carriage in elderly is rarely detected. Here, we tested for S. pneumoniae in nasopharyngeal and saliva samples collected from community-dwelling elderly with influenza-like-illness (ILI). Trans-nasal nasopharyngeal, trans-oral nasopharyngeal and saliva samples (n = 270 per sample type) were collected during winter/spring 2011/2012 from 135 persons aged 60–89 at onset of ILI and 7–9 weeks later following recovery. After samples were tested for pneumococci by conventional culture, all plate growth was collected. DNA extracted from plate harvests was tested by quantitative-PCRs (qPCR) specific for S. pneumoniae and serotypes included in the 13-valent pneumococcal conjugated vaccine (PCV13). Pneumococci were cultured from 14 of 135 (10%) elderly with none of the sampled niches showing superiority in carriage detection. With 76/270 (28%) saliva, 31/270 (11%) trans-oral and 13/270 (5%) trans-nasal samples positive by qPCR, saliva was superior to nasopharyngeal swabs (p<0.001) in qPCR-based carriage detection. Overall, from all methods used in the study, 65 of 135 (48%) elderly carried pneumococci at least once and 26 (19%) at both study time points. The difference between carriage prevalence at ILI (n = 49 or 36%) versus recovery (n = 42 or 31%) was not significant (p = 0.38). At least 23 of 91 (25%) carriage events in 19 of 65 (29%) carriers were associated with PCV13-serotypes. We detected a large reservoir of pneumococci in saliva of elderly, with PCV13-serotype distribution closely resembling the contemporary carriage of serotypes reported in the Netherlands for PCV-vaccinated infants.  相似文献   

8.
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.  相似文献   

9.
Colonization and persistence in the human nasopharynx are prerequisites for Streptococcus pneumoniae disease and carriage acquisition, which normally occurs during early childhood. Animal models and in vitro studies (i.e. cell adhesion and cell cytotoxicity assays) have revealed a number of colonization and virulence factors, as well as regulators, implicated in nasopharyngeal colonization and pathogenesis. Expression of genes encoding these factors has never been studied in the human nasopharynx. Therefore, this study analyzed expression of S. pneumoniae virulence-related genes in human nasopharyngeal samples. Our experiments first demonstrate that a density of ≥104 CFU/ml of S. pneumoniae cells in the nasopharynx provides enough DNA and RNA to amplify the lytA gene by conventional PCR and to detect the lytA message, respectively. A panel of 21 primers that amplified S. pneumoniae sequences was designed, and their specificity for S. pneumoniae sequences was analyzed in silico and validated against 20 related strains inhabitants of the human upper respiratory tract. These primers were utilized in molecular reactions to find out that all samples contained the genes ply, pavA, lytC, lytA, comD, codY, and mgrA, whereas nanA, nanB, pspA, and rrgB were present in ∼91–98% of the samples. Gene expression studies of these 11 targets revealed that lytC, lytA, pavA and comD were the most highly expressed pneumococcal genes in the nasopharynx whereas the rest showed a moderate to low level of expression. This is the first study to evaluate expression of virulence- and, colonization-related genes in the nasopharynx of healthy children and establishes the foundation for future gene expression studies during human pneumococcal disease.  相似文献   

10.
The natural niche of Streptococcus pneumoniae is the nasopharyngeal mucosa and nasopharyngeal carriage of pneumococci is widely prevalent. Pneumolysin (Ply), a pore-forming protein produced by S. pneumonia, may be important in driving the innate immune response of the nasopharynx. We studied the Ply-induced production of CXCL8 by nasopharyngeal cells and further analysed the mechanism of this induction. Detroit nasopharyngeal cells were stimulated with supernatants derived from bacterial cultures of Ply-deficient, wild-type pneumococci and recombinant Ply, and CXCL8 measured by ELISA. The role of MAP kinase family members in Ply-induced CXCL8 production was analysed using specific inhibitors, NF-κB activity was measured by immunoblot and Ply-mediated TLR4 activation analysed by a CXCL8 promotor luciferase assay. Ply significantly increased production of CXCL8 in Detroit and primary nasal cells. Flow cytometric analysis showed that Detroit cells express cell surface TLR4. CXCL8 production was dependent on changes in the intracellular Ca(2+) levels and also by NF-κB via activation of TLR4, and MAP kinase signalling. Ply induces production of CXCL8 by nasopharyngeal cells using signalling mechanisms involving Ca(2+) mobilisation and activation of MAPK and NF-κB via TLR4. This may be important in regulating nasopharyngeal immunity against pneumococcal colonization.  相似文献   

11.
Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4+ T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4+ T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4+ T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A+ CD4+ T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF+/IL-17A+ co-producing CD4+ memory T-cells (p<0.01); IFNγ+ CD4+ memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4+ memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = −0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4+ memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.  相似文献   

12.
CodY is a nutritional regulator mainly involved in amino acid metabolism. It has been extensively studied in Bacillus subtilis and Lactococcus lactis. We investigated the role of CodY in gene regulation and virulence of the human pathogen Streptococcus pneumoniae. We constructed a codY mutant and examined the effect on gene and protein expression by microarray and two-dimensional differential gel electrophoresis analysis. The pneumococcal CodY regulon was found to consist predominantly of genes involved in amino acid metabolism but also several other cellular processes, such as carbon metabolism and iron uptake. By means of electrophoretic mobility shift assays and DNA footprinting, we showed that most of the targets identified are under the direct control of CodY. By mutating DNA predicted to represent the CodY box based on the L. lactis consensus, we demonstrated that this sequence is indeed required for in vitro DNA binding to target promoters. Similar to L. lactis, DNA binding of CodY was enhanced in the presence of branched-chain amino acids, but not by GTP. We observed in experimental mouse models that codY is transcribed in the murine nasopharynx and lungs and is specifically required for colonization. This finding was underscored by the diminished ability of the codY mutant to adhere to nasopharyngeal cells in vitro. Furthermore, we found that pcpA, activated by CodY, is required for adherence to nasopharyngeal cells, suggesting a direct link between nutritional regulation and adherence. In conclusion, pneumococcal CodY predominantly regulates genes involved in amino acid metabolism and contributes to the early stages of infection, i.e., colonization of the nasopharynx.  相似文献   

13.
The human nasopharynx is the main reservoir for Streptococcus pneumoniae. We applied conventional and molecular methods to determine the prevalence of S. pneumoniae nasopharyngeal colonization in adults. Paired trans-orally and trans-nasally obtained nasopharyngeal samples from 268 parents of 24-month-old children were assessed for pneumococcal presence. Parents were classified as colonized when live pneumococci were recovered from either sample cultured on medium selective for S. pneumoniae. Of the 52 (19%) colonized parents 49 (18%) were culture-positive in trans-nasal and 10 (4%) in trans-oral samples. Bacterial growth was harvested from these cultures, DNA isolated and tested by quantitative-PCR (qPCR) targeting lytA and piaA genes specific for S. pneumoniae. A sample was considered positive if signals for both genes were detected. Altogether 105 (39%) individuals were classified as positive for pneumococcus by qPCR including 50 (19%) in trans-nasal and 94 (35%) in trans-oral settings. Although significantly more trans-nasal compared to trans-oral samples were culture-positive for S. pneumoniae at the primary diagnostic step (p<0.001) the opposite was observed in qPCR results (p<0.001). To confirm the presence of live pneumococcus in samples positive by qPCR but negative at the initial diagnostic step, we serially-diluted cell harvests, re-cultured and carefully examined for S. pneumoniae presence. Live pneumococci were recovered from an additional 43 parents including 42 positive in trans-oral and 4 in trans-nasal samples increasing the number of individuals culture- and qPCR-positive to 93 (35%) and positive by either of two methods to 107 (40%). There were significantly more trans-oral than trans-nasal samples positive for pneumococcus by both culture and qPCR (n = 71; 27%; vs. n = 50; 19%; p<0.05). Our data suggest that pneumococcal colonization is more common in adults than previously estimated and point towards the superiority of a trans-oral over a trans-nasal approach when testing adults for colonization with S. pneumoniae.  相似文献   

14.
The genomic analysis of Streptococcus pneumoniae strains identified the Pneumococcal adherence and virulence factor B (PavB), whose repetitive sequences, designated Streptococcal Surface REpeats (SSURE), interact with human fibronectin. Here, we showed the gene in all tested pneumococci and identified that the observed differences in the molecular mass of PavB rely on the number of repeats, ranging from five to nine SSURE. PavB interacted with fibronectin and plasminogen in a dose‐dependent manner as shown by using various SSURE peptides. In addition, we identified PavB as colonization factor. Mice infected intranasally with ΔpavB pneumococci showed significantly increased survival times compared with wild‐type bacteria. Importantly, the pavB‐mutant showed a delay in transmigration to the lungs as observed in real‐time using bioluminescent pneumococci and decreased colonization rates in a nasopharyngeal carriage model. In co‐infection experiments the wild‐type out‐competed the pavB‐mutant and infections of epithelial cells demonstrated that PavB contributes to adherence to host cell. Blocking experiments suggested a function of PavB as adhesin, which was confirmed by direct binding of SSURE peptides to host cells. Finally, PavB may represent a new vaccine candidate as SSURE peptides reacted with human sera. Taken together, PavB is a surface‐exposed adhesin, which contributes to pneumococcal colonization and infections of the respiratory airways.  相似文献   

15.

Background

Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen.

Methodology/Principal Findings

We have constructed mutants lacking the pneumococcal cell wall hydrolases (CWHs) LytB and LytC to investigate the role of these proteins in different phases of the pneumococcal pathogenesis. Our results show that LytB and LytC are involved in the attachment of S. pneumoniae to human nasopharyngeal cells both in vitro and in vivo. The interaction of both proteins with phagocytic cells demonstrated that LytB and LytC act in concert avoiding pneumococcal phagocytosis mediated by neutrophils and alveolar macrophages. Furthermore, C3b deposition was increased on the lytC mutant confirming that LytC is involved in complement evasion. As a result, the lytC mutant showed a reduced ability to successfully cause pneumococcal pneumonia and sepsis. Bacterial mutants lacking both LytB and LytC showed a dramatically impaired attachment to nasopharyngeal cells as well as a marked degree of attenuation in a mouse model of colonization. In addition, C3b deposition and phagocytosis was more efficient for the double lytB lytC mutant and its virulence was greatly impaired in both systemic and pulmonary models of infection.

Conclusions/Significance

This study confirms that the CWHs LytB and LytC of S. pneumoniae are essential virulence factors involved in the colonization of the nasopharynx and in the progress of invasive disease by avoiding host immunity.  相似文献   

16.
Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies.  相似文献   

17.
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite to invasion to the lungs or bloodstream1. This organism is capable of colonizing the mucosal surface of the nasopharynx, where it can reside, multiply and eventually overcome host defences to invade to other tissues of the host. Establishment of an infection in the normally lower respiratory tract results in pneumonia. Alternatively, the bacteria can disseminate into the bloodstream causing bacteraemia, which is associated with high mortality rates2, or else lead directly to the development of pneumococcal meningitis. Understanding the kinetics of, and immune responses to, nasopharyngeal colonization is an important aspect of S. pneumoniae infection models.Our mouse model of intranasal colonization is adapted from human models3 and has been used by multiple research groups in the study of host-pathogen responses in the nasopharynx4-7. In the first part of the model, we use a clinical isolate of S. pneumoniae to establish a self-limiting bacterial colonization that is similar to carriage events in human adults. The procedure detailed herein involves preparation of a bacterial inoculum, followed by the establishment of a colonization event through delivery of the inoculum via an intranasal route of administration. Resident macrophages are the predominant cell type in the nasopharynx during the steady state. Typically, there are few lymphocytes present in uninfected mice8, however mucosal colonization will lead to low- to high-grade inflammation (depending on the virulence of the bacterial species and strain) that will result in an immune response and the subsequent recruitment of host immune cells. These cells can be isolated by a lavage of the tracheal contents through the nares, and correlated to the density of colonization bacteria to better understand the kinetics of the infection.  相似文献   

18.
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%–30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.  相似文献   

19.
Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell-dependent, antibody- and serotype-independent protection against colonization. Here we show that this immunity, rather than preventing initiation of carriage, accelerates clearance over several days, accompanied by neutrophilic infiltration of the nasopharyngeal mucosa. Adoptive transfer of immune CD4+ T cells was sufficient to confer immunity to na?ve RAG1(-/-) mice. A critical role of interleukin (IL)-17A was demonstrated: mice lacking interferon-gamma or IL-4 were protected, but not mice lacking IL-17A receptor or mice with neutrophil depletion. In vitro expression of IL-17A in response to pneumococci was assayed: lymphoid tissue from vaccinated mice expressed significantly more IL-17A than controls, and IL-17A expression from peripheral blood samples from immunized mice predicted protection in vivo. IL-17A was elicited by pneumococcal stimulation of tonsillar cells of children or adult blood but not cord blood. IL-17A increased pneumococcal killing by human neutrophils both in the absence and in the presence of antibodies and complement. We conclude that IL-17A mediates pneumococcal immunity in mice and probably in humans; its elicitation in vitro could help in the development of candidate pneumococcal vaccines.  相似文献   

20.

Background

A 9-valent pneumococcal conjugate vaccine (PCV-9), given in a 3-dose schedule, protected Gambian children against pneumococcal disease and reduced nasopharyngeal carriage of pneumococci of vaccine serotypes. We have studied the effect of a booster or delayed primary dose of 7-valent conjugate vaccine (PCV-7) on antibody and nasopharyngeal carriage of pneumococci 3–4 years after primary vaccination.

Methodology/Principal Findings

We recruited a subsample of children who had received 3 doses of either PCV-9 or placebo (controls) into this follow-up study. Pre- and post- PCV-7 pneumococcal antibody concentrations to the 9 serotypes in PCV-9 and nasopharyngeal carriage of pneumococci were determined before and at intervals up to 18 months post-PCV-7. We enrolled 282 children at a median age of 45 months (range, 38–52 months); 138 had received 3 doses of PCV-9 in infancy and 144 were controls. Before receiving PCV-7, a high proportion of children had antibody concentrations >0.35 µg/mL to most of the serotypes in PCV-9 (average of 75% in the PCV-9 and 66% in the control group respectively). The geometric mean antibody concentrations in the vaccinated group were significantly higher compared to controls for serotypes 6B, 14, and 23F. Antibody concentrations were significantly increased to serotypes in the PCV-7 vaccine both 6–8 weeks and 16–18 months after PCV-7. Antibodies to serotypes 6B, 9V and 23F were higher in the PCV-9 group than in the control group 6–8 weeks after PCV-7, but only the 6B difference was sustained at 16–18 months. There was no significant difference in nasopharyngeal carriage between the two groups.

Conclusions/Significance

Pneumococcal antibody concentrations in Gambian children were high 34–48 months after a 3-dose primary infant vaccination series of PCV-9 for serotypes other than serotypes 1 and 18C, and were significantly higher than in control children for 3 of the 9 serotypes. Antibody concentrations increased after PCV-7 and remained raised for at least 18 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号