首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Chloroplast signals regulate hundreds of nuclear genes during development and in response to stress, but little is known of the signals or signal transduction mechanisms of plastid-to-nucleus (retrograde) signaling. In Arabidopsis thaliana, genetic studies using norflurazon (NF), an inhibitor of carotenoid biosynthesis, have identified five GUN (genomes uncoupled) genes, implicating the tetrapyrrole pathway as a source of a retrograde signal. Loss of function of any of these GUN genes leads to increased expression of photosynthesis-associated nuclear genes (PhANGs) when chloroplast development has been blocked by NF. Here we present a new Arabidopsis gain-of-function mutant, gun6-1D, with a similar phenotype. The gun6-1D mutant overexpresses the conserved plastid ferrochelatase 1 (FC1, heme synthase). Genetic and biochemical experiments demonstrate that increased flux through the heme branch of the plastid tetrapyrrole biosynthetic pathway increases PhANG expression. The second conserved plant ferrochelatase, FC2, colocalizes with FC1, but FC2 activity is unable to increase PhANG expression in undeveloped plastids. These data suggest a model in which heme, specifically produced by FC1, may be used as a retrograde signal to coordinate PhANG expression with chloroplast development.  相似文献   

6.
An inhibitor analysis was used for studying the tetrapyrrole role in the regulation of the expression of the nuclear gene encoding a low-molecular-weight protein, a stress plastid light-inducible protein ELIP. 2,2′-Dipyridyl and norflurazon were used as inhibitors. Experiments with dipyridyl demonstrated that tetrapyrroles were involved in the regulation of Elip gene expression, inhibiting it by ~50%. Similar results were obtained when there was photodestruction of the chloroplasts, caused by a plant treatment with norflurazon. The results confirm the involvement of the chloroplasts in the regulation of the nuclear gene expression coding for plastid proteins. Tetrapyrroles are important contributors to this process.  相似文献   

7.
An inhibitor analysis was used for studying the tetrapyrrole role in the regulation of the expression of the nuclear gene encoding a low-molecular-weight protein, a stress plastid light-inducible protein ELIP. 2,2'-Dipyridyl and norflurazon were used as inhibitors. Experiments with dipyridyl demonstrated that tetrapyrroles were involved in the regulation of Elip gene expression, inhibiting it by approximately 50%. Similar results were obtained when there was photodestruction of the chloroplasts, caused by a plant treatment with norflurazon. The results confirm the involvement of the chloroplasts in the regulation of the nuclear gene expression coding for plastid proteins. Tetrapyrroles are important contributors to this process.  相似文献   

8.
9.
Maple J  Winge P  Tveitaskog AE  Gargano D  Bones AM  Møller SG 《Planta》2011,234(5):1055-1063
Plastids are vital organelles involved in important metabolic functions that directly affect plant growth and development. Plastids divide by binary fission involving the coordination of numerous protein components. A tight control of the plastid division process ensures that: there is a full plastid complement during and after cell division, specialized cell types have optimal plastid numbers; the division rate is modulated in response to stress, metabolic fluxes and developmental status. However, how this control is exerted by the host nucleus is unclear. Here, we report a genome-wide microarray analysis of three accumulation and replication of chloroplasts (arc) mutants that show a spectrum of altered plastid division characteristics. To ensure a comprehensive data set, we selected arc3, arc5 and arc11 because they harbour mutations in protein components of both the stromal and cytosolic division machinery, are of different evolutionary origin and display different phenotypic severities in terms of chloroplast number, size and volume. We show that a surprisingly low number of genes are affected by altered plastid division status, but that the affected genes encode proteins important for a variety of fundamental plant processes.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Current concepts are outlined regarding the chloroplast effects on expression of the nuclear genes encoding plastid proteins. The major types of plastid-generated signals are considered. The signal molecules are shown to include the reactive oxygen species, the redox state of the components of photosynthetic electron transport, in particular plastoquinones, the redox-active molecules of plastid stroma, such as thioredoxin and glutathione, and also the intermediates of tetrapyrrole biosynthesis (Mg-protoporphyrin IX and its monomethyl ester). The sophisticated regulatory network is emphasized as a channel matching up the expression of nuclear and plastid genes. The plastid-generated signals help plants adapt to the changing and frequently adverse environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号