首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Warburg proposed that cancer originates from irreversible injury to mitochondrial oxidative phosphorylation (mtOXPHOS), which leads to an increase rate of aerobic glycolysis in most cancers. However, despite several decades of research related to Warburg effect, very little is known about the underlying genetic cause(s) of mtOXPHOS impairment in cancers. Proteins that participate in mtOXPHOS are encoded by both mitochondrial DNA (mtDNA) as well as nuclear DNA. This review describes mutations in mtDNA and reduced mtDNA copy number, which contribute to OXPHOS defects in cancer cells. Maternally inherited mtDNA renders susceptibility to cancer, and mutation in the nuclear encoded genes causes defects in mtOXPHOS system. Mitochondria damage checkpoint (mitocheckpoint) induces epigenomic changes in the nucleus, which can reverse injury to OXPHOS. However, irreversible injury to OXPHOS can lead to persistent mitochondrial dysfunction inducing genetic instability in the nuclear genome. Together, we propose that "mitocheckpoint" led epigenomic and genomic changes must play a key role in reversible and irreversible injury to OXPHOS described by Warburg. These epigenetic and genetic changes underlie the Warburg phenotype, which contributes to the development of cancer.  相似文献   

2.
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial‐targeted proteins (N‐mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N‐mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear‐ and mitochondrial‐encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N‐mt gene evolution in species with fast‐evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N‐mt substitutions at positions that directly contact mutated residues in mitochondrial‐encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N‐mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.  相似文献   

3.
The 13 peptides encoded by vertebrate mitochondrial DNA (mtDNA) are essential subunits of oxidative phosphorylation (OXPHOS) enzymes. These genes normally experience purifying selection and also coevolve with nuclear-encoded subunits of OXPHOS complexes. However, the role of positive selection on mtDNA evolution is still unclear, as most examples of intergenomic coevolution appear to be the result of compensation by nuclear-encoded genes for mildly deleterious mtDNA mutations, and not simultaneous positive selection in both genomes. Organisms that have experienced strong selective pressures to increase aerobic capacity or adapt to changes in thermal environment may be better candidates in which to examine the impact of positively selected changes on mtDNA evolution. The tuna (suborder Scombroidei, family Scombridae) and billfish (suborder Scombroidei, families Xiphiidae and Istiophoridae) are highly aerobic fish with multiple specializations in muscle energetics, including a high mitochondrial content and regional endothermy. We examined the role of positively selected mtDNA substitutions in the production of these unique phenotypes. Focusing on a catalytic subunit of cytochrome c oxidase (COX II), we found that the rate ratio of nonsynonymous (d(N); amino acid changing)-to-synonymous (d(S); silent) substitutions was not increased in lineages leading to the tuna but was significantly increased in the lineage preceding the billfish. Furthermore, there are a number of individual positively selected sites that, when mapped onto the COX crystal structure, appear to interact with other COX subunits and may affect OXPHOS function and regulation in billfish.  相似文献   

4.
Moslemi AR  Darin N 《Mitochondrion》2007,7(4):241-252
Mitochondrial OXPHOS disorders are caused by mutations in mitochondrial or nuclear genes, which directly or indirectly affect mitochondrial oxidative phosphorylation (OXPHOS). Primary mtDNA abnormalities in children are due to rearrangements (deletions or duplications) and point mutations or insertions. Mutations in the nuclear-encoded polypeptide subunits of OXPHOS result in complex I and II deficiency, whereas mutations in the nuclear proteins involved in the assembly of OXPHOS subunits cause defects in complexes I, III, IV, and V. Here, we review recent progress in the identification of mitochondrial and nuclear gene defects and the associated clinical manifestations of these disorders in childhood.  相似文献   

5.
6.
Mitochondria (mt) in plants house about 20 group-II introns, which lie within protein-coding genes required in both organellar genome expression and respiration activities. While in nonplant systems the splicing of group-II introns is mediated by proteins encoded within the introns themselves (known as “maturases”), only a single maturase ORF (matR) has retained in the mitochondrial genomes in plants; however, its putative role(s) in the splicing of organellar introns is yet to be established. Clues to other proteins are scarce, but these are likely encoded within the nucleus as there are no obvious candidates among the remaining ORFs within the mtDNA. Intriguingly, higher plants genomes contain four maturase-related genes, which exist in the nucleus as self-standing ORFs, out of the context of their evolutionary-related group-II introns “hosts.” These are all predicted to reside within mitochondria and may therefore act “in-trans” in the splicing of organellar-encoded introns. Here, we analyzed the intracellular locations of the four nuclear-encoded maturases in Arabidopsis and established the roles of one of these genes, At5g46920 (AtnMat2), in the splicing of several mitochondrial introns, including the single intron within cox2, nad1 intron2, and nad7 intron2.  相似文献   

7.
Nuclear and mitochondrial genomes have to work in concert to generate a functional oxidative phosphorylation (OXPHOS) system. We have previously shown that we could restore partial OXPHOS function when chimpanzee or gorilla mitochondrial DNA (mtDNA) were introduced into human cells lacking mtDNA. However, we were unable to maintain orangutan mitochondrial DNA in a human cell. We have now produced chimpanzee, gorilla, orangutan, and baboon cells lacking mtDNA and attempted to introduce mtDNA from different apes into them. Surprisingly, we were able to maintain human mtDNA in an orangutan nuclear background, even though these cells showed severe OXPHOS abnormalities, including a complete absence of assembled ATP synthetase. Phylogenetic analysis of complex V mtDNA-encoded subunits showed that they are among the most evolutionarily divergent components of the mitochondrial genome between orangutan and the other apes. Our studies showed that adaptive coevolution of nuclear and mitochondrial components in apes can be fast and accelerate in recent branches of anthropoid primates.  相似文献   

8.
Fundamental biological processes hinge on coordinated interactions between genes spanning two obligate genomes—mitochondrial and nuclear. These interactions are key to complex life, and allelic variation that accumulates and persists at the loci embroiled in such intergenomic interactions should therefore be subjected to intense selection to maintain integrity of the mitochondrial electron transport system. Here, we compile evidence that suggests that mitochondrial–nuclear (mitonuclear) allelic interactions are evolutionarily significant modulators of the expression of key health-related and life-history phenotypes, across several biological scales—within species (intra- and interpopulational) and between species. We then introduce a new frontier for the study of mitonuclear interactions—those that occur within individuals, and are fuelled by the mtDNA heteroplasmy and the existence of nuclear-encoded mitochondrial gene duplicates and isoforms. Empirical evidence supports the idea of high-resolution tissue- and environment-specific modulation of intraindividual mitonuclear interactions. Predicting the penetrance, severity and expression patterns of mtDNA-induced mitochondrial diseases remains a conundrum. We contend that a deeper understanding of the dynamics and ramifications of mitonuclear interactions, across all biological levels, will provide key insights that tangibly advance our understanding, not only of core evolutionary processes, but also of the complex genetics underlying human mitochondrial disease.  相似文献   

9.
OXPHOS polymorphisms are known to be population specific and to influence disease. Previous studies have focused on mtDNA polymorphisms. Based on a world sampling of 629 unrelated individuals, we have now studied the polymorphisms of the 80 genes encoding OXPHOS nuclear subunits. We have shown that (i) amino-acid replacement frequencies are significantly correlated with their pathogenicity probability, and (ii) populations can be distinguished based only on amino-acid replacements in nuclear encoded OXPHOS subunits. These results are congruent with the major mtDNA haplogroups, which suggests that OXPHOS complexes are different across the populations in both nuclear and in mitochondrial encoded subunits.  相似文献   

10.
Despite years of research, the structure of the largest mammalian oxidative phosphorylation (OXPHOS) complex, NADH-ubiquinone oxidoreductase (complex I), and the interactions among its 45 subunits are not fully understood. Since complex I harbors subunits encoded by mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genomes, with the former evolving ∼ 10 times faster than the latter, tight cytonuclear coevolution is expected and observed. Recently, we identified three nDNA-encoded complex I subunits that underwent accelerated amino acid replacement, suggesting their adjustment to the elevated mtDNA rate of change. Hence, they constitute excellent candidates for binding mtDNA-encoded subunits.Here, we further disentangle the network of physical cytonuclear interactions within complex I by analyzing subunits coevolution. Firstly, relying on the bioinformatic analysis of 10 protein complexes possessing solved structures, we show that signals of coevolution identified physically interacting subunits with nearly 90% accuracy, thus lending support to our approach. When applying this approach to cytonuclear interaction within complex I, we predict that the ‘rate-accelerated’ nDNA-encoded subunits of complex I, NDUFC2 and NDUFA1, likely interact with the mtDNA-encoded subunits ND5/ND4 and ND5/ND4/ND1, respectively. Furthermore, we predicted interactions among mtDNA-encoded complex I subunits. Using the yeast two-hybrid system, we experimentally confirmed the predicted interactions of human NDUFC2 with ND4, the interactions of human NDUFA1 with ND1 and ND4, and the lack of interaction of NDUFC2 with ND3 and NDUFA1, thus providing a proof of concept for our approach.Our study shows, for the first time, evidence for direct interactions between nDNA-encoded and mtDNA-encoded subunits of human OXPHOS complex I and paves the path towards deciphering subunit interactions within complexes lacking three-dimensional structures. Our subunit-interactions-predicting method, ComplexCorr, is available at http://webclu.bio.wzw.tum.de/complexcorr.  相似文献   

11.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

12.
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that “mitocheckpoint” mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.  相似文献   

13.
14.
Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations.  相似文献   

15.
16.
17.
The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme–lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme–lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.  相似文献   

18.
Why females assess ornaments when choosing mates remains a central question in evolutionary biology. We hypothesize that the imperative for a choosing female to find a mate with nuclear oxidative phosphorylation (OXPHOS) genes that are compatible with her mitochondrial OXPHOS genes drives the evolution of ornaments. Indicator traits are proposed to signal the efficiency of OXPHOS function thus enabling females to select mates with nuclear genes that are compatible with maternal mitochondrial genes in the formation of OXPHOS complexes. Species-typical pattern of ornamentation is proposed to serve as a marker of mitochondrial type ensuring that females assess prospective mates with a shared mitochondrial background. The mitonuclear compatibility hypothesis predicts that the production of ornaments will be closely linked to OXPHOS pathways, and that sexual selection for compatible mates will be strongest when genes for nuclear components of OXPHOS complexes are Z-linked. The implications of this hypothesis are that sexual selection may serve as a driver for the evolution of more efficient cellular respiration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号