首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NMR structure of cyclosporin A bound to cyclophilin in aqueous solution   总被引:7,自引:0,他引:7  
Cyclosporin A bound to the presumed receptor protein cyclophilin was studied in aqueous solution at pH 6.0 by nuclear magnetic resonance spectroscopy using uniform 15N- or 13C-labeling of cyclosporin A and heteronuclear spectral editing techniques. Sequence-specific assignments were obtained for all but one of the cyclosporin A proton resonances. With an input of 108 intramolecular NOEs and four vicinal 3JHN alpha coupling constants, the three-dimensional structure of cyclosporin A bound to cyclophilin was calculated with the distance geometry program DISMAN, and the structures resulting from 181 converged calculations were energy refined with the program FANTOM. A group of 120 conformers was selected on the basis of the residual constraint violations and energy criteria to represent the solution structure. The average of the pairwise root-mean-square distances calculated for the backbone atoms of the 120 structures was 0.58 A. The structure represents a novel conformation of cyclosporin A, for which the backbone conformation is significantly different from the previously reported structures in single crystals and in chloroform solution. The structure has all peptide bonds in the trans form, contains no elements of regular secondary structure and no intramolecular hydrogen bonds, and exposes nearly all polar groups to its environment. The root-mean-square distance between the backbone atoms of the crystal structure of cyclosporin A and the mean of the 120 conformers representing the NMR structure of cyclosporin A bound to cyclophilin is 2.5 A.  相似文献   

2.
《FEBS letters》1994,340(3):255-259
The conformation of [ -MeSer3- -Ser-(O-Gly8]CS, a water soluble cyclosporin derivative, has been determined in (D6)DMSO and in water using NMR. In these polar solvents the conformation is identical and very similar to the structure found in the cyclophilin-cyclosporin complex. However, it differs significantly from its conformation in deuterated chloroform. This demonstrates unambiguously that the large structure change is induced primarily by the polar solvent rather than by complex formation with cyclophilin.  相似文献   

3.
Hemolytic delta-toxin from Staphylococcus aureus was soluble in either water, methanol or chloroform/methanol (2 : 1, v/v). The toxin spread readily from distilled water into films with pressures (pi) of 10 dynes/cm on water and 30 dynes/cm on 6 M urea; from chloroform/methanol it produced 40 dynes/cm pressure on distilled water. The toxin adsorbed barely from water (pi = 1 dyne/ cm) but it did rapidly from 6 M urea (pi = 35 dynes/cm). The protein films had unusually high surface potentials, which increased with the film pressure and decreased with increasing both pH and urea concentration in the aqueous phase. The fluorescence of 1-aniline 8-naphthalene sulfonate with delta-toxin was much greater than that with RNAase and dipalmitoyl phosphatidylcholine itself, indicating probably a marked lipid-binding character of the toxin. By circular dichroism the alpha-helix content of delta-toxin was 42% in water, 45% in methanol, 24% in 6 M urea. Infrared spectroscopy showed predominant alpha-helix in both 2H2O and deuterated chloroform/methanol as well as in films spread from either solvent on 2H2O. In spreading from 6 M [2H]urea, in which the major infrared absorption was that of [2H]urea with peaks at 1600 and 1480 cm(-1), the delta-toxin film showed prevalently non-alpha-helix structures with major peak intensities at 1633 cm(-1) > 1680 cm(-1), indicating the appearance of new beta-aggregated and beta-antiparallel pleated sheet structures in the film. The data prove that (1) high pressure protein films can consist of alpha-helix as well as non-alpha-helix structures and, differently from another cytolytic protein, melittin, delta-toxin does not resume the alpha-helix conformation in going into the film phase from the extended chain in 6 M urea; (2) conformational changes are important in the transport of proteins from aqueous to lipid or membrane phase; (3) delta-toxin is by far more versatile in structural dynamics and more surface active than alpha-toxin.  相似文献   

4.
Proteolipid apoproteins have been prepared from heart, kidney, and liver by dialysis in chloroform/methanol against chloroform/methanol, acidified chloroform/methanol, and chloroform/methanol in succession. They are free of lipids (less than 0.05% P; less than 0.1% carbohydrate). They show a high content of non-polar amino acids, methionine, and tryptophan and contain little or no half-cystine. The differ from neural proteolipid apoproteins by absence of half-cystine, and of covalently bound fatty acids. As recovered from chloroform/methanol solutions, they are soluble in chloroform/methanol and insoluble in water, but a water-soluble form can be prepared by changing the solvent from chloroform/methanol to water in a stream of nitrogen. The chloroform-methanol-soluble form and the water-soluble form are interconvertible. ORD and CD spectra of all proteolipid apoproteins indicate 60-70% alpha-helix content in chloroform/methanol solution and 20-30% alpha-helix in water solution. Sodium dodecyl sulfate gel electrophoresis resolves proteolipid apoprotein into two major components corresponding to ca. 12 000 and 34 000 daltons. With sodium dodecyl sulfate/urea numerous bands appear, with a major one at 30 000 daltons and 8 to 10, ranging downward to 2500. For comparison, neural proteolipid apoproteins also show numerous bands with a major one at 25 000. The marked chemical and physical similarities among all proteolipid apoproteins studied suggest a common role in membrane structures.  相似文献   

5.
We synthesized by solution methods a water-soluble, terminally blocked heptapeptide based on five markedly helicogenic, C(alpha)-tetrasubstituted alpha-amino acids C(alpha)-methyl-L-norvalines and two strongly hydrophilic 2-amino-3-[1-(1,4,7-triazacyclononane)]-L-propanoic acid residues at positions 2 and 5. A Fourier transform infrared absorption and NMR analysis in deuterated chloroform and aqueous solutions of the heptapeptide and two side-chain protected synthetic precursors confirmed our working hypothesis that all oligomers are folded in the 3(10)-helical conformation. Based on these findings, we exploited this heptapeptide as a chiral reference compound for detailed electronic CD, vibrational CD, and Raman optical activity characterizations of the 3(10)-helix in aqueous solution.  相似文献   

6.
A simple method involving polyamide column chromatography in combination with HPLC-PAD and HPLC-ESI/MS for isolating and identifying two kinds of lignans, arctiin and arctigenin, in the leaves of burdock (Arctium lappa L.) has been established. After extraction of burdock leaves with 80% methanol, the aqueous phase of crude extracts was partitioned between water and chloroform and the aqueous phase was fractionated on a polyamide glass column. The fraction, eluting with 100% methanol, was concentrated and gave a white precipitate at 4 degrees C from which two main compounds were purified by semi-preparative HPLC. In comparison with the UV and ESI-MS spectra and the HPLC retention time of authentic standards, the compounds were determined to be arctiin and arctigenin. The extraction/separation technique was validated using an internal standard method.  相似文献   

7.
Enzymes bind NAD(+) in extended conformations and yet NAD(+) exists in aqueous solution as a compact, folded molecule. Thus, NAD(+) conformation is environment dependent. In an attempt to investigate the effects of environmental changes on the conformation of NAD(+), a series of molecular dynamics simulations in different solvents was performed. The solvents investigated (water, DMSO, methanol and chloroform) represented changes in relative permittivity and hydrophobic character. The simulations predicted folded conformations of NAD(+) to be more stable in water, DMSO and methanol. In contrast, extended conformations of NAD(+) were observed to be more stable in chloroform. Furthermore, the extended conformations observed in chloroform were similar to conformations of NAD(+) bound to enzymes. In particular, a large separation between the aromatic rings and a strong interaction between the pyrophosphate and nicotinamide groups were observed. The implications of these observations for the recognition of NAD(+) by enzymes is discussed. It is argued that a hydrophobic environment is important for stabilizing unfolded conformations of NAD(+).  相似文献   

8.
Pigments including bacteriochlorophyll (BChl) c, carotenoids, and a trace of BChl a together with a lipid, monogalactosyl diglyceride (MGDG), were extracted with chloroform/methanol (1:1 v/v) from an aqueous suspension (50 mM Tris-HCl, pH 8.0) of chlorosomes from Chlorobium limicola; other lipids and proteins were left behind in the aqueous layer by funnel separation. The chloroform layer was dried by purging N2 gas, dissolved in methanol, and rapidly injected into the aqueous layer to reassemble chlorosomes. This technique has been developed to replace one-half of the inherent 12C-BChl c by 13C-BChl c to identify the intermolecular 13C...13C magnetic dipole correlation peaks (that are supposed to reduce their intensities to one-fourth by reducing the 13C-BChl c concentration into one-half) and to determine the structure of BChl c aggregates in the rod elements by means of solid-state NMR spectroscopy. The isotopically replaced chlorosomes were characterized (1) by sucrose density gradient centrifugation, zeta potential measurement, electron microscopy, and dynamic light scattering measurement to determine the morphology of chlorosomes, (2) by 13C NMR spectroscopy, electronic absorption and circular dichroism spectroscopies, and low-angle X-ray diffraction to determine the pigment assembly in the rod elements, and (3) by subpicosecond time-resolved absorption spectroscopy to determine the excited-state dynamics in the pigment assembly. The results characterized the reassembled chlorosomes to have (1) similar but longer morphological structures, (2) almost the same pigment assembly in the rod elements, and (3) basically the same excited-state dynamics in the pigment assembly.  相似文献   

9.
The pH dependence of the proton NMR spectrum of [Asn1, Val5] angiotensin II in aqueous solution shows the existence of one major and one minor conformation above pH 6.5, the minor conformation representing 12 +/- 2% of the total peptide. A similar observation has been made for (Asn1, Val5) angiotensin I and Val-Tyr-Val-His-Pro-Phe. This effect is not due to the presence of angiotensin-like impurities in the peptide samples. We have shown two expected impurities, [beta-Asp1, Val5] angiotensin II and [Asn1, 3-Bzl-Ty4, Val5] - angiotensin II, to be absent, and a third impurity [Asn1, Val5, D-His6] angiostensin II, to be present at less than or equal to 2.1 mol%, too little to account for the observed amount (12 +/- 2%) of minor conformation. The carbon-13 spectrum of the hexapeptide at high pH shows that the major conformation has Pro7 in the trans form and the minor conformation has Pro7 in the cis form.  相似文献   

10.
Biscyclo(Cys-Sar) [I] and biscyclo(Cys-Pro) [II] were prepared by the extension of amino acid moieties from cystine. Compound I equilibrates between two rotamers around the CSSC bond of the cystine residue in methanol, showing dual negative CD transitions (CS-SC) at 270 and 255 nm, and dual S-S vibrations at 507 and 539 cm?1 in Raman spectra. In contrast, a conformation of P-helix type is suggested in CH3CN, which shows a distinct negative CD at 270 nm and only one Raman band at 507 cm?1 for the S-S bond. Compound II rotates freely in dimethylsulfoxide (Me2SO) but takes a relatively stable conformer of P-helix type in methanol, chloroform/Me2SO (9:1), and chloroform/trifluoroacetic acid (9:1). The conformation in chloroform is retained even on addition of trifluoroacetic acid. A more complete conformation of compound II in water was determined from the negative CD of S-S transition and 1H-nmr spectra of the Cys-β-CH2 protons.  相似文献   

11.
The solution structures of calyculin A and dephosphonocalyculin A by NMR   总被引:1,自引:0,他引:1  
The NMR solution structure of calyculin A (1) in chloroform exhibits intramolecular interactions, resembling the original crystal structure. In methanol, calyculin A has the hydrogen bonding moieties solvent exposed. Dephosphonocalyculin A in chloroform resembles calyculin A in chloroform and the crystal structure of calyculin A. Dephosphonocalyculin A in methanol resembles calyculin A in methanol.  相似文献   

12.
The conformation of the self-complimentary DNA dodecamer d(br5CGbr5CGAATTbr5CGbr5CG) has been investigated in a variety of salt and solvent conditions by one and two-dimensional 1H NMR. In low salt aqueous solutions, the molecule forms a regular B-DNA structure similar to the unmodified dodecamer. However, in aqueous solution containing high salt concentration and methanol, the dodecamer adopts a structure in which the br5CGbr5CG ends of the molecule are in a Z-DNA like conformation and the AATT region is neither standard B-DNA nor Z-DNA. The implications of these results for the structure of junctions between B and Z-DNA and the sequence specificity of Z-DNA are discussed.  相似文献   

13.
The common phospholipids from biological sources were quantitated using phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy in conjunction with an analytical reagent composed of two parts: 1) 2 ml of reagent chloroform in which was dissolved 0.01-100 mg of crude tissue lipid extracted from tissue sources using chloroform-methanol 2:1, the extract having been washed with 0.2 vol. of 0.1 M KCl; 2) 1 ml of an aqueous methanol reagent composed of one part 0.2 M (ethylenedinitrilo)-tetraacetic acid in D2O titrated to pH 6 with CsOH and four parts of reagent methanol. In a magnetic field of 11.75 Tesla, the extracted phospholipids yield narrow signals (1.8-3.2 Hz at half-height), corresponding to each generic species, e.g., phosphatidylcholines, phosphatidylethanolamines, etc., permitting resolution among the various phospholipid families and their lyso and plasmalogen derivatives. The reagent permits assays of high precision and accuracy using a modest amount of NMR spectrometer time (ca. 15 min/assay). The procedures described, which are compared to high-performance liquid chromatography, are convenient for the routine analysis of phospholipids from biological sources.  相似文献   

14.
J A Killian  D W Urry 《Biochemistry》1988,27(19):7295-7301
The ability of gramicidin to induce bilayer formation in lysophosphatidylcholine (LPC) systems was investigated as a function of the conformation of the peptide. The conformation was varied by using different solvents to cosolubilize gramicidin and lipid. Using circular dichroism (CD), it was found that when codissolved in trifluoroethanol (TFE), after drying and subsequent hydration, gramicidin is mainly present in the single-stranded beta 6.3-helical configuration, whereas when using chloroform/methanol or ethanol as the solvent, it is proposed that the dominant conformation of gramicidin in the membrane is that of the double-stranded antiparallel dimer. Employing 31P NMR, the stoichiometry for bilayer formation was found to be 6 to 7 lipid molecules per gramicidin monomer, when samples were prepared from TFE, whereas a stoichiometry of 4 was found when chloroform/methanol or ethanol was the solvent. Upon heating the latter samples, a conversion was observed in the CD pattern toward that indicative of the beta 6.3-helical configuration. This change was accompanied by an increase in the extent of bilayer formation. Next, it was investigated whether the conformation of gramicidin and its ability to induce bilayer formation were dependent on the lipid acyl chain length. CD measurements of samples prepared from TFE indicated that gramicidin, independent of acyl chain length, was present in the beta 6.3-helical configuration but the intensity of the ellipticities at 218 nm increased with the length of the acyl chain. The extent of bilayer formation in these samples was found to be largely chain length independent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The immunosuppressant drug cyclosporin A exists as various conformers in water. Up to 1 h is needed to reach maximum complex formation after mixing the drug with its receptor, cyclophilin, or an antibody, indicating that only a fraction of the conformers in aqueous solution adopts a conformation suitable for binding. In the present study we compare the binding behavior of cyclosporin to that of two analogs, using a biosensor instrument (BIAcore, Pharmacia). The amount of complex formation was measured as a function of time after adding the peptides to cyclophilin. The equilibrium affinity constants of cyclophilin for these analogs have been measured. The slow binding of cyclosporin to cyclophilin compared to the instant binding of the cyclosporin analogs supports the hypothesis that cyclophilin recognizes a well defined conformation of cyclosporin that exists in water prior to binding.  相似文献   

16.
Temperature dependence of the α-helix conformation of bee venom melittin in methanol-water mixed solvents has been examined by NMR, in order to elucidate conformation stability and a phase diagram. At high methanol concentration of 100 - ca. 80 wt.%, melittin forms a full α-helix conformation in the temperature range from 25 °C to 60 °C. At intermediate methanol concentration of ca. 80 - ca. 25 wt.%, it undergoes a thermal transformation from a full α-helix to a partial α-helix. In solutions of low methanol concentrations of ca. 25 - 0 wt.%, partial α-helix monomers and their self-aggregated conformers coexist at low temperatures, and the relative number of the monomers increases with increase in temperature. The monomers turn to a random coil state at high temperatures only below ca. 10 wt. % methanol concentrations. The thermal transitions are discussed from the viewpoint of stability of intra-molecular hydrogen bonds and inter-molecular hydrophobic interactions.  相似文献   

17.
The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding C-terminal 38 residues of the bovine milk component PP3 was determined using 1H NMR in methanol, CD in methanol and SDS micelles, and 15N solid-state NMR in planar phospholipid bilayers. The solution NMR and CD spectra reveal that the PP3 peptide in methanol and SDS predominantly adopts an alpha-helical conformation extending over its entire length with a potential bend around residue 19. 15N solid-state NMR of two PP3 peptides 15N-labelled at the Gly7 and Ala32 positions, respectively, and dissolved in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol phospholipid bilayers shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.  相似文献   

18.
The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chromatography in a chloroform/methanol/H(2)O (4:4:1) solvent system. Circular dichroism analysis indicated that the alpha-helical content of ImmE1 is approximately 80% in 1-butanol or 2,2,2-trifluoroethanol, consistent with a previous membrane-folding model with three extended hydrophobic transmembrane helical domains, H1-H3. Each of these extended hydrophobic domains contains a centrally located single Cys residue that could be used as a probe of protein structure. The presence of tertiary structure of purified ImmE1 in a solvent of mixed polarity, chloroform/methanol/H(2)O (4:4:1) was demonstrated by (i) the constraints on Tyr residues shown by the amplitude of near-UV circular dichroism spectra in the wavelength interval, 270-285 nm; (ii) the correlation between the near-UV Tyr CD spectrum of single and double Cys-to-X mutants of the Imm protein and their in vivo activity; (iii) the upfield shift of methyl groups in a 1D NMR spectrum, a 2D- HSQC NMR spectrum of ImmE1 in the mixed polarity solvent mixture, and a broadening and disappearance of the indole (1)H proton resonance from Trp94 in H3 by a spin label attached to Cys16 in the H2 hydrophobic domain; (iv) near-UV circular dichroism spectra with a prominent ellipticity band centered at 290 nm from a single Trp inserted into the extended hydrophobic domains. It was concluded that the colicin E1 immunity protein adopts a folded conformation in chloroform/methanol/H(2)O (4:4:1) that is stabilized by helix-helix interactions. Analysis of the probable membrane folding topology indicated that several Tyr residues in the bilayer region of the three transmembrane helices could contribute to the near-UV CD spectrum through helix-helix interactions.  相似文献   

19.
The dependence of the conformation of cyclosporin A (CPA), a cyclic undecapeptide with potent immunosuppressive activity, on the type of solvent environment is examined using the computer simulation method of molecular dynamics (MD). Conformational and dynamic properties of CPA in aqueous solution are obtained from MD simulations of a CPA molecule dissolved in a box with water molecules. Corresponding properties of CPA in apolar solution are obtained from MD simulations of CPA in a box with carbontetrachloride. The results of these simulations in H2O and in CCl4 are compared to each other and to those of previous simulations of crystalline CPA and of an isolated CPA molecule. The conformation of the backbone of the cyclic polypeptide is basically independent of the type of solvent. In aqueous solution the beta-pleated sheet is slightly weaker and the gamma-turn is a bit less pronounced than in apolar solution. Side chains may adopt different conformations in different solvents. In apolar solution the hydrophobic side chain of the MeBmt residue is in an extended conformation with its hydroxyl group hydrogen bonded to the backbone carbonyl group. In aqueous solution this hydrophobic side chain folds over the core of the molecule and the mentioned hydrogen bond is broken in favor of hydrogen bonding to water molecules. The conformation obtained from the MD simulation in CCl4 nicely agrees with experimental atom-atom distance data as obtained from nmr experiments in chloroform. In aqueous solution the relaxation of atomic motion tends to be slower than in apolar solution.  相似文献   

20.
NMR studies showed that 11-demethylcyclosporin A (cyclosporin E) and 11-demethylcyclosporin B exist as single species both in polar and nonpolar solvents. They adopt the same conformation that was found in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号