首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mammary glands undergo functional and metabolic changes during virgin, lactation and dry periods. A total of 122 genes were identified as differentially expressed, including 79 up-regulated and 43 down-regulated genes during lactation compared with virgin and dry periods. Gene ontology analysis showed the functional classification of the up-regulated genes in lactation, including transport, biosynthetic process, signal transduction, catalytic activity, immune system process, cell death, and positive regulation of the developmental process. Microarray data clarified molecular events in bovine mammary gland lactation.  相似文献   

4.
Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA‐sequencing of the corpus callosum from patients with autism exhibited extensive gene mis‐expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.  相似文献   

5.
6.
7.
Gangliosides of human milk from women at various periods of lactation were analyzed. GD3 in colostrum, particularly in the early period of lactation, was the major ganglioside, and the molar ratio of GM3 to GD3 was 0.2-0.3 in the milk at 2-6 days postpartum. In contrast, milk from women at 60-390 days postpartum contained GM3 as the major ganglioside and the molar ratio of GM3 to GD3 was more than 3. Milk at 8-40 days postpartum represented an intermediate stage in terms of the ratio of GM3 to GD3. The selective change in the molar ratio of gangliosides was observed as a phenomenon common to all human milk from different individuals at different periods of lactation, indicating that the periods of lactation can be defined on the basis of the ratio. Since glycolipids in human milk are preferentially localized in the milk fat globule membrane, which is derived from the plasma membrane of epithelial cells in the mammary gland, the changes in the ganglioside composition reported in this communication may reflect a qualitative change of the cells in the mammary gland.  相似文献   

8.
9.
10.
In most mammalian tissues, the stanniocalcin-1 gene (STC-1) produces a 50-kDa polypeptide hormone known as STC50. Within the ovaries, however, the STC-1 gene generates three higher-molecular-mass variants known as big STC. Big STC is targeted locally to corpus luteal cells to block progesterone release. During pregnancy and lactation, however, ovarian big STC production increases markedly, and the hormone is released into the serum. During lactation, this increase in hormone production is dependent on a suckling stimulus, suggesting that ovarian big STC may have regulatory effects on the lactating mammary gland. In this report, we have addressed this possibility. Our results revealed that virgin mammary tissue contained large numbers of membrane- and mitochondrial-associated STC receptors. However, as pregnancy progressed into lactation, there was a decline in receptor densities on both organelles and a corresponding rise in nuclear receptor density, most of which were on milk-producing, alveolar cells. This was accompanied by nuclear sequestration of the ligand. Sequestered STC resolved as one approximately 135-kDa band in the native state and therefore had the appearance of a big STC variant. However, chemical reduction collapsed this one band into six closely spaced, lower-molecular-mass species (28-41 kDa). Mammary gland STC production also underwent a dramatic shift during pregnancy and lactation. High levels of STC gene expression were observed in mammary tissue from virgin and pregnant rats. However, gene expression then fell to nearly undetectable levels during lactation, coinciding with the rise in nuclear targeting. These findings have thus shown that the mammary glands are indeed targeted by STC, even in the virgin state. They have further shown that there are marked changes in this targeting pathway during pregnancy and lactation, accompanied by a switch in ligand source (endogenous to exogenous). They also represent the first example of nuclear targeting by STC.  相似文献   

11.
12.
Polyamines and RNA accumulate in the rat mammary gland during pregnancy, but the major increases occur after parturition. Therefore the major increases occur after the gland has obtained its maximal complement of epithelial cells. During lactation, the spermidine concentration rises above 5mm and RNA content in the lactating mammary gland reaches a value 16 times that of the unstimulated mammary gland. The ratio of spermidine/spermine, an increase of which initially signals an elevation in biosynthetic activity, is near 1 in the normal mammary gland and is greater than 10 in the lactating mammary gland. Putrescine concentration is very low during the entire course of mammary-gland development, with the exception of early pregnancy. The low putrescine concentration probably reflects the very rapid conversion of putrescine into spermidine. Both ornithine decarboxylase, the enzyme that synthesizes putrescine, and putrescine-stimulated S-adenosyl-l-methionine decarboxylase, the enzyme that synthesizes spermidine, increase in activity during middle and late pregnancy; during lactation, both enzyme activities are elevated until the 21st day of lactation, and then decline. These declines are concomitant with involution. Also, it was found that the amount of ribonuclease activity in the mammary gland was very high during lactation, almost double that in the gland during pregnancy.  相似文献   

13.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

14.
The liver and the mammary gland have complementary metabolic roles during lactation. Glucose synthesized by the liver is released into the circulation and is taken up by the mammary gland where major metabolic products of glucose include milk sugar (lactose) and the glycerol backbone of milk fat (triglycerides). Hepatic synthesis of glucose is often accompanied by β-oxidation in that organ to provide energy for glucose synthesis, while mammary gland synthesizes rather than oxidizes fat during lactation. We have therefore compared enzyme abundances between the liver and mammary gland of lactating Friesian cows where metabolic output is well established. Quantitative differences in protein amount were assessed using two-dimensional differential in-gel electrophoresis. As predicted, the abundances of enzymes catalysing gluconeogenesis and β-oxidation were greatest in the liver, and enzyme abundances in mammary tissue were consistent with fat synthesis rather than β-oxidation.  相似文献   

15.
Summary Ultrastructural examination of milk secretory cells from lactating bovine mammary gland revealed presence of numerous microtubules in the apical and paranuclear cytoplasm, particularly in the vicinity of Golgi components. Most microtubules were oriented perpendicular to the apical plasma membrane and appeared to form a framework around Golgi dictyosomal elements and secretory vesicles. In comparison, non-secretory cells obtained from involuting glands displayed few microtubules and these were randomly located throughout the cytoplasm with no particular orientation.  相似文献   

16.
17.
The calmodulin content of heat-treated extracts of rat mammary tissue and isolated cells was measured by using stimulation of cyclic nucleotide phosphodiesterase (PDE) activity and radioimmunoassay (r.i.a.) procedures. The calmodulin content of mammary tissue increased 2.5-fold near the time of parturition, remained at the elevated level during lactation, then, after the onset of involution, decreased to values similar to those measured from mammary tissue of pregnant rats. When tissue from 15 animals in different stages of pregnancy, lactation and involution were compared, the r.i.a. gave 2.6-fold higher results than the PDE assay. To investigate further the increase in calmodulin content of mammary tissue, secretory and myoepithelial cells were enzymically dissociated from rat mammary tissue during different stages of pregnancy, lactation and involution. Protein, DNA, lactose, glucose-6-phosphate dehydrogenase and alkaline phosphatase were assayed to characterize the cell fractions. By using r.i.a., the calmodulin content per mg of protein in isolated secretory-cell fractions was high near parturition, then decreased and remained relatively constant during lactation. The amount of calmodulin expressed per mg of DNA in secretory cells did not show a marked change near parturition, suggesting a constant amount of calmodulin per cell. The calmodulin content of myoepithelial cells dissociated from mammary tissue and measured by using r.i.a. was 6-fold lower than in secretory cells and remained relatively constant during the course of lactation. The changing levels of calmodulin in rat mammary tissue during development are suggested to be related to proliferation and destruction of secretory epithelial cells, events that occur near parturition and involution respectively.  相似文献   

18.
19.
1. Binding of insulin to microsomes from mammary glands of pregnant and lactating dairy cows was characterized. 2. Binding affinities of the insulin receptor did not change from pregnancy to lactation. 3. Maximal specific binding occurred in microsomes from cows in mid-pregnancy and declined in microsomes from cows in late pregnancy. 4. Insulin binding continued to decrease from early to mid-lactation and increased during late lactation. 5. Results indicate that decreased sensitivity in mammary tissue from lactating dairy cows is at least in part a result of a reduction in insulin receptor number. 6. Results demonstrate further physiological differences between the ruminant and non-ruminant mammary gland.  相似文献   

20.
Lactogenic hormones from the placenta and pituitary are primarily responsible for the growth and function of the mammary gland during pregnancy and lactation. In the present study we describe the optimal conditions for the measurement of 125I-labeled ovine prolactin binding to mammary gland slices of pregnant and lactating rats. Prolactin binding is saturable (Kd approx. 2.36 · 10?9 M), hormone specific and destroyed by proteases. The hormonal environments of pregnancy and lacation dramatically influence the availability and measurement of prolactin binding sites. Whereas binding consistently appears to be low in mammary glands removed from rats during pregnancy, binding levels rise 7–8-fold shortly after birth and remain high during the 22 days of lactation. However, the removal of the ovaries and gravid uteri at specific times during pregnancy results in prompt 3–6-fold increase in prolactin binding. Elevated levels in potential prolactin binding capacity appear in mammary tissue coincident with the reported rise in serum rat placental lactogen between the eight and eleventh days. We suggest that high levels of this lactogenic hormone promote the appearance of prolactin binding sites during pregnancy and mask the sites such that they are not available for measurement in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号