首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2012,18(3):399-402
ObjectiveTo examine the effect of 50 000 IU-vitamin D2 supplementation in a clinical setting on serum total 25-hydroxyvitamin D (25[OH]D), 25-hydroxyvitamin D2 (25[OH]D2), and 25-hydroxyvitamin D3 (25[OH]D3).MethodsThis retrospective cohort study was performed in an urban tertiary referral hospital in Boston, Massachusetts. Patients who had been prescribed 50 000 IU vitamin D2 repletion and maintenance programs were identified through a search of our electronic medical record. Baseline and follow-up total serum 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were compared.ResultsWe examined the medical records of 48 patients who had been prescribed 50 000 IU vitamin D2 in our clinic. Mean ± standard deviation baseline total 25(OH) D was 31.0 ± 10.6 ng/mL and rose to 48.3 ± 13.4 ng/mL after treatment (P <.001). 25(OH)D2 increased from 4.2 ± 4.3 ng/mL to 34.6 ± 12.3 ng/mL after treatment (P <.001), for an average of 158 days (range, 35-735 days). Serum 25(OH)D3 decreased from 26.8 ± 10.8 ng/mL to 13.7 ± 7.9 ng/mL (P <.001).ConclusionsFifty thousand IU vitamin D2 repletion and maintenance therapy substantially increases total 25(OH)D and 25(OH)D2 despite a decrease in serum 25(OH)D3. This treatment program is an appropriate and effective strategy to treat and prevent vitamin D deficiency.(Endocr Pract. 2012;18:399-402)  相似文献   

2.
Background: Serum 25‐hydroxyvitamin D (25(OH)D) is low in obese adults. Objective: To examine serum 25(OH)D in obese (BMI >95th percentile for age) vs. non‐obese (BMI = 5th–75th percentile for age) 6–10‐year‐old African American children and compare their differences in therapeutic response to vitamin D supplementation. Methods and Procedures: In an open label non‐randomized pre‐post comparison 21 obese (OB) and 20 non‐obese (non‐OB) subjects matched for age, sex, skin color, and pubertal maturation were treated with 400 IU of vitamin D3 daily for 1 month. Serum 25(OH)D, 1,25‐dihydroxyvitamin D (1,25(OH)2D), parathyroid hormone (PTH), leptin, and markers of bone turnover (serum bone‐specific alkaline phosphatase (BSAP), osteocalcin (OC), and urine n ‐telopeptide cross‐links of type 1 collagen (urine NTX)) were measured. Vitamin D deficiency was defined as serum 25(OH)D ≤20 ng/ml and insufficiency as 21–29 ng/ml respectively. Results: Vitamin D deficiency occurred in 12/21 (57%) OB vs. 8/20 (40%) non‐OB at baseline (P = 0.35) and persisted in 5/21 (24%) OB vs. 2/18 (11%) non‐OB (P = 0.42) after treatment. When the cohort was stratified by the baseline levels of 25(OH)D, there were differences in the response to treatment in the obese and non‐obese cohorts. Discussion: Vitamin D deficiency was common among OB and non‐OB preadolescent African American children, and 400 IU of vitamin D3 (2× the recommended adequate intake) daily for 1 month was inadequate to raise their blood levels of 25(OH)D to ≥30 ng/ml.  相似文献   

3.
Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to characterize the marmoset's ability to metabolize dietary vitamin D3. We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2D3 between the colonies. Serum 1,25(OH)2D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2D3; excess 25(OH)D3 is metabolized into 24,25(OH)2D3. This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.  相似文献   

4.
5.
Vitamin D deficiency may increase the risk for metabolic syndrome. We determined the relationship of serum 25‐hydroxyvitamin D (25(OH)D) with metabolic syndrome components in obese adolescent females and assessed whether vitamin D treatment corrects metabolic disturbances. Eighty postmenarchal adolescents (53 African American (AA) and 27 Caucasian American (CA)) were evaluated with blood pressures and fasting measurements of serum 25(OH)D, lipid profile, C‐reactive protein, alanine transaminases (ALTs) and aspartate transaminases followed by an oral glucose tolerance test. A subgroup (n = 14) of vitamin D deficient subjects were re‐evaluated following vitamin D treatment. Among all subjects, 25(OH)D was inversely associated with fasting glucose (r = ?0.28, P = 0.02) and positively associated with low‐density lipoprotein (LDL) cholesterol (r = 0.31, P = 0.008), independent of race and BMI. In analyses by race, adjusted for BMI, 25(OH)D was inversely associated with fasting insulin in CA (r = ?0.42, P = 0.03) but not AA (r = 0.11, P = 0.43) whereas 25(OH)D was positively associated with ALT in AA, but not CA (r = 0.29, P = 0.04 vs. r = ?0.21, P = 0.32). Fasting glucose improved in vitamin D treated subgroup (from 89.07 ± 8.3 mg/dl to 84.34 ± 8.4 mg/dl, P = 0.05). A trend toward improvement in fasting glucose remained after exclusion of four subjects whose serum 25(OH)D2 did not improve following treatment (P = 0.12). In conclusion, serum 25(OH)D was inversely associated with fasting glucose, and vitamin D treatment had beneficial effects on fasting glucose. Relationships of 25(OH)D with fasting insulin and ALT were ethnic specific. The positive relationship with LDL and ALT were suggestive of possible adverse influences of vitamin D.  相似文献   

6.
7.
《Endocrine practice》2012,18(6):847-854
ObjectiveThe adequate dose of vitamin D supple mentation for community-dwelling elderly people has not been thoroughly investigated. This study aims to determine the efficacy of a low-dose and a higher dose of vitamin D3 in maintaining 25-hydroxyvitamin D [25(OH)D] levels at or above 30 ng/mL.MethodsThis was a single site, double-blind, ran domized exploratory clinical trial that enrolled adults 65 years of age and older. Within strata of baseline 25(OH) D levels (< 30 versus ≥ 30 ng/mL) subjects were random ized in a 1:2 ratio to receive either 400 or 2,000 IU vitamin D3 daily for 6 months. The main outcome measures were changes in serum 25(OH)D levels according to baseline 25(OH)D levels and dose of vitamin D3.ResultsAt baseline, 41 of 105 participants (39%) had low 25(OH)D levels (< 30 ng/mL). After 6 months of vitamin D3 supplementation, 21 of 32 participants (66%) receiving 400 IU and 14 of 59 participants (24%) receiving 2,000 IU of vitamin D3 still had low 25(OH)D levels. Thelargest increases in serum 25(OH)D levels were observed in subjects with baseline levels < 30 ng/mL who received 2,000 IU of vitamin D daily.ConclusionRegardless of baseline 25(OH)D level, in persons 65 years of age and older, 6-month vitamin D3 supplementation with 400 IU daily resulted in low 25(OH) D in most individuals, while 2,000 IU daily maintained 25(OH)D levels within an acceptable range in most people on this regimen. (Endocr Pract. 2012;18:847-854)  相似文献   

8.
Low circulating concentrations of vitamin D metabolites have been associated with increased risk for several diseases and clinical conditions. Large observational studies and surveys have shown that obesity is independently associated with lower serum 25‐hydroxyvitamin D (25(OH)D) concentration. Few studies have examined the effect of weight loss on serum 25(OH)D concentration. The purpose of this study was to prospectively examine the effect of weight loss on serum 25(OH)D concentration. Data were collected from 383 overweight or obese women who participated in a 2‐year clinical trial of a weight‐loss program, in which 51% (N = 195) lost at least 5% of baseline weight by 24 months, 18% (N = 67) lost 5–10%, and 33% (N = 128) lost >10%. Women who did not lose weight at 24 months had an increase in serum 25(OH)D of 1.9 (9.7) ng/ml (mean (SD)); 25(OH)D increased by 2.7 (9.1) ng/ml for those who lost 5–10% of baseline weight; and 25(OH)D increased by 5.0 (9.2) ng/ml for those who lost >10% of baseline weight (P = 0.014). At baseline, 51% (N = 197) of participants met or exceeded the recommended serum concentration of 20 ng/ml. By study end, 64% (N = 230) of overweight or obese women met this goal, as well as 83% (N = 20) of those whose weight loss achieved a normal BMI. These findings suggest that weight loss, presumably associated with a reduction in body fat, is associated with increased serum 25(OH)D concentration in overweight or obese women.  相似文献   

9.
25‐Hydroxyvitamin D3 (25(OH)D3) is a prohormone and a major vitamin D metabolite. The discovery of (25(OH)D3) 1α‐hydroxylase in many vitamin D target organs has yielded an increased interest in defining the role(s) of 25(OH)D3 in these tissues. The etiology of cancer appears to be complex and multi‐factorial. Cellular stress (e.g., DNA damage, hypoxia, oncogene activation) has been identified as one of the key factors responsible for initiating the carcinogenesis process. In this study, we investigated whether 25(OH)D3 protects breast epithelial cells from cellular stress using an established breast epithelial cell line MCF12F. To better elucidate the role of 25(OH)D3 in the stress response, we used multiple in vitro stress models including serum starvation, hypoxia, oxidative stress, and apoptosis induction. Under all these stress conditions, 25(OH)D3 (250 nmol/L) treatment significantly protected cells against cell death. Low‐serum stress induced p53 expression accompanied with downregulation of PCNA, the presence of 25(OH)D3 consistently inhibited the alteration of p53 and PCNA, suggesting that these molecules were involved in the stress process and may be potential target genes of 25(OH)D3. miRNA microarray analysis demonstrated that stress induced by serum starvation caused significant alteration in the expression of multiple miRNAs including miR182, but the presence of 25(OH)D3 effectively reversed this alteration. These data suggest that there is a significant protective role for 25(OH)D3 against cellular stress in the breast epithelial cells and these effects may be mediated by altered miRNA expression. J. Cell. Biochem. 110: 1324–1333, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
《Endocrine practice》2015,21(4):348-354
Objective: To examine the relationship between pre-operative vitamin D status and post-thyroidectomy hypocalcemia.Methods: Retrospective study examining 264 total and completion thyroidectomies conducted between 2007 and 2011. Subjects included had a recorded 25-hydroxyvitamin D (25[OH]D) level within 21 days prior to or 1 day following surgery, did not have a primary parathyroid gland disorder, and were not taking 1,25-dihydroxyvitamin D3 (calcitriol) prior to surgery. Some subjects were repleted with vitamin D pre-operatively if a low 25(OH)D level (typically below 20 ng/mL) was identified. Pre-operative 25(OH)D, concurrent neck dissection, integrity of parathyroid glands, final pathology, postoperative parathyroid hormone (PTH), calcium nadir and repletion, and length of stay were examined.Results: The mean pre-operative 25(OH)D for all subjects was 25 ng/mL, and the overall rate of post-operative hypocalcemia was 37.5%. Lower pre-operative 25(OH)D did not predict postoperative hypocalcemia (P =.96); however, it did predict the need for postoperative 1,25-dihydroxyvitamin D3 administration (P =.01). Lower postoperative PTH levels (P =.001) were associated with postoperative hypocalcemia.Conclusion: Pre-operative 25(OH)D did not predict a postoperative decrease in serum calcium, although it did predict the need for 1,25-dihydroxyvitamin D3 therapy in hypocalcemic subjects. We recommend that 25(OH)D be assessed and, if indicated, repleted pre-operatively in patients undergoing total thyroidectomy.Abbreviations: 25(OH)D = 25-hydroxyvitamin D PTH = parathyroid hormone  相似文献   

11.
《Endocrine practice》2014,20(12):1258-1264
ObjectiveThe prevalence of vitamin D inadequacy is high in obese individuals. Determining the response of serum 25-hydroxyvitamin D (25[OH]D) to vitamin D3 supplementation in obese and nonobese individuals may lead to concurrent recommendations for optimal vitamin D intake in these populations. The objective of this study was to determine the dose response of vitamin D3 in subjects with a body mass index ≥ 35 kg/m2.MethodsRandomized, double-blind, placebo-controlled study. This study is an extension of our previous study of vitamin D dosing in healthy adults. After an assessment of baseline 25(OH)D levels, participants were randomized to a vitamin D supplementation arm (100 μg daily if baseline 25[OH]D was < 50 nmol/L, or 50 μg daily if baseline 25[OH]D was ≥ 50 nmol/L) or placebo arm. Subjects with baseline 25(OH)D level ≥ 80 nmol/L were excluded from the study. Two months following randomization, a repeat 25(OH)D measurement was done.ResultsFinal analysis included 25 subjects (14 placebo, 11 active). At 2 months, serum 25(OH)D concentration increased to a mean of 75 nmol/L in the active group. Mean slope (i.e., vitamin D3 response), defined as 25(OH) D change/baseline dose, was 0.398 nmol/L/μg/day.ConclusionThe dose response of vitamin D3 (slope) in obese subjects was significantly lower (P < .03) at 0.398 nmol/L/μg/day compared to the slope in the previous study of healthy subjects (0.66 nmol/L/μg/day). These results suggest that obese individuals may require 40% higher vitamin D intake than nonobese individuals to attain the same serum 25(OH)D concentration. (Endocr Pract. 2014;20:1258-1264)  相似文献   

12.
《Endocrine practice》2007,13(2):131-136
ObjectiveTo assess the effect of bariatric surgical treatment of morbid obesity on bone mineral metabolism.MethodsWe analyzed pertinent vitamin D and calcium metabolic variables in 136 patients who had undergone a malabsorptive bariatric operation. Measurements of bone mineral density (BMD), serum 25-hydroxyvitamin D (25-OHD), 1,25-dihydroxyvitamin D [1,25-(OH)2D], parathyroid hormone (PTH), calcium, phosphorus, and alkaline phosphatase were performed. Statistical analyses assessed correlations among various factors.ResultsThe mean age (± SD) of the study group was 48.34 ± 10.28 years. Their mean weight loss was 114.55 ± 45.66 lb, and the mean duration since the bariatric surgical procedure was 54.02 ± 51.88 months. Seventeen patients (12.5%) had a T-score of -2.5 or less, and 54 patients (39.7%) had a T-score between –1.0 and –2.5. Of 119 patients in whom serum 25-OHD was measured, 40 (34%) had severe hypovitaminosis D (25-OHD < 8 ng/mL), and 50 patients (42%) had low hypovitaminosis D (serum 25-OHD 8 to 20 ng/mL). The magnitude of weight loss correlated negatively with serum 25-OHD, calcium, phosphorus, and calcium × phosphorus product values and positively with serum alkaline phosphatase level. Serum 25-OHD and calcium concentrations correlated positively with the BMD. PTH, serum 1,25-(OH)2D, and alkaline phosphatase concentrations correlated negatively with the BMD, a reflection of the presence of secondary hyperparathyroidism, an accelerated conversion of 25-OHD to 1,25-(OH)2D by the elevated PTH levels, and increased osteoblastic activity. The mean daily vitamin D supplementation was 6,472 ± 9,736 IU.ConclusionHypovitaminosis D and subsequent bone loss are common in patients who have undergone a bariatric surgical procedure for morbid obesity. These patients require rigorous vitamin D supplementation. (Endocr Pract. 2007;13:131-136)  相似文献   

13.
Roux-en-y gastric bypass (RYGB) surgery is associated with dramatic improvements in obesity-related comorbidity, but also with nutritional deficiencies. Vitamin D concentrations are depressed in the severely obese, but the impact of weight loss via RYGB is unknown. We determined associations between adiposity and systemic 25-hydroxyvitamin D (25(OH)D) during weight loss and the immediate and longer-term effects of RYGB. Plasma 25(OH)D concentrations and fat mass (FAT) were determined by immunoassay and air displacement plethysmography, respectively, at 0 (before RYGB surgery), and at 1, 6, and 24 months in severely obese white and African American (AA) women (n = 20). Decreases in adiposity were observed at 1, 6, and 24 months following RYGB (P < 0.05). Plasma 25(OH)D concentrations increased at 1 month (P = 0.004); a decreasing trend occurred over the remainder months after surgery (P = 0.02). Despite temporary improvement in vitamin D status, a high prevalence of vitamin D insufficiency was observed (76, 71, 67, and 82%, at baseline, 1, 6, and 24 months, respectively), and plasma 25(OH)D concentrations were lower in AA compared to white patients (P < 0.05). Strong positive baseline and 1 month cross-sectional correlations between FAT and plasma 25(OH)D were observed, which remained after adjustment for age and race subgroup (β = 0.76 and 0.61, respectively, P = 0.02). In conclusion, 25(OH)D concentrations increased temporarily and then decreased during the 24 months following RYGB. The acute increase and the positive associations observed between adipose tissue mass and systemic 25(OH)D concentrations suggest storage in adipose tissue and release during weight loss.  相似文献   

14.
Vitamin D is essential for bone health and is known to be involved in immunomodulation and cell proliferation. Vitamin D status remains a significant health issue worldwide. However, there has been no clear consensus on vitamin D deficiency and its measurement in serum, and clinical practice of vitamin D deficiency treatment remains inconsistent. The major circulating metabolite of vitamin D, 25-hydroxyvitamin D (25(OH)D), is widely used as a biomarker of vitamin D status. Other metabolic pathways are recognised as important to vitamin D function and measurement of other metabolites may become important in the future. The utility of free 25(OH)D rather than total 25(OH)D needs further assessment. Data used to estimate the vitamin D intake required to achieve a serum 25(OH)D concentration were drawn from individual studies which reported dose-response data. The studies differ in their choice of subjects, dose of vitamin D, frequency of dosing regimen and methods used for the measurement of 25(OH)D concentration. Baseline 25(OH)D, body mass index, ethnicity, type of vitamin D (D2 or D3) and genetics affect the response of serum 25(OH)D to vitamin D supplementation. The diversity of opinions that exist on this topic are reflected in the guidelines. Government and scientific societies have published their recommendations for vitamin D intake which vary from 400–1000 IU/d (10–25 μg/d) for an average adult. It was not possible to establish a range of serum 25(OH)D concentrations associated with selected non-musculoskeletal health outcomes. To recommend treatment targets, future studies need to be on infants, children, pregnant and lactating women.  相似文献   

15.
Circulating 25-hydroxyvitamin D [25(OH)D] is generally considered the means by which we define nutritional vitamin D status. There is much debate, however, with respect to what a healthy minimum level of circulation 25(OH)D should be. Recent data using various biomarkers such as intact parathyroid hormone (PTH), intestinal calcium absorption, and skeletal density measurements suggest this minimum level to be 80 nmol (32 ng/mL). Surprisingly, the relationship between circulating vitamin D3 and its metabolic product—25(OH)D3 has not been studied. We investigated this relationship in two separate populations: the first, individuals from Hawaii who received significant sun exposure; the second, subjects from a lactation study who received up to 6400 IU vitamin D3/day for 6 months.Results (1) the relationship between circulating vitamin D3 and 25(OH)D in both groups was not linear, but appeared saturable and controlled; (2) optimal nutritional vitamin D status appeared to occur when molar ratios of circulating vitamin D3 and 25(OH)D exceeded 0.3; at this point, the Vmax of the 25-hydroxylase appeared to be achieved. This was achieved when circulating 25(OH)D exceeded 100 nmol.We hypothesize that as humans live today, the 25-hydroxylase operates well below its Vmax because of chronic substrate deficiency, namely vitamin D3. When humans are sun (or dietary) replete, the vitamin D endocrine system will function in a fashion as do these other steroid synthetic pathways, not limited by substrate. Thus, the relationship between circulating vitamin D and 25(OH)D may represent what “normal” vitamin D status should be.  相似文献   

16.
Objective:To examine bone mass and metabolism in women who had previously undergone Roux‐en‐Y gastric bypass (RYGB) and determine the effect of supplementation with calcium (Ca) and vitamin D. Research Methods and Procedures: Bone mineral density and bone mineral content (BMC) were examined in 44 RYGB women (≥3 years post‐surgery; 31% weight loss; BMI, 34 kg/m2) and compared with age‐ and weight‐matched control (CNT) women (n = 65). In a separate analysis, RYGB women who presented with low bone mass (n = 13) were supplemented to a total 1.2 g Ca/d and 8 μg vitamin D/d over 6 months and compared with an unsupplemented CNT group (n = 13). Bone mass and turnover and serum parathyroid hormone (PTH) and 25‐hydroxyvitamin D were measured. Results:Bone mass did not differ between premenopausal RYGB and CNT women (42 ± 5 years), whereas postmenopausal RYGB women (55 ± 7 years) had higher bone mineral density and BMC at the lumbar spine and lower BMC at the femoral neck. Before and after dietary supplementation, bone mass was similar, and serum PTH and markers of bone resorption were higher (p < 0.001) in RYGB compared with CNT women and did not change significantly after supplementation. Discussion: Postmenopausal RYGB women show evidence of secondary hyperparathyroidism, elevated bone resorption, and patterns of bone loss (reduced femoral neck and higher lumbar spine) similar to other subjects with hyperparathyroidism. Although a modest increase in Ca or vitamin D does not suppress PTH or bone resorption, it is possible that greater dietary supplementation may be beneficial.  相似文献   

17.
The apparent plasma concentration of vitamin D binding protein (DBP) in an iguanian lizard, Pogona barbata, and the affinity of this protein for 25-hydroxyvitamin D3 (25(OH)D3), 25-hydroxyvitamin D2 (25(OH)D2), and 1,25-dihydroxyvitamin D3 (1,25(OH)D3) was found to resemble more closely that of the domestic hen than that of the human. The characteristics of Pogona DBP, the pattern of vitamin D metabolites derived from injected radioactive vitamin D3 and the plasma concentrations of endogenous 25-hydroxyvitamin D (25(OH)D) in a range of iguanian lizards have been examined. The findings suggest that 25-hydroxyvitamin D (25(OH)D) is the major metabolite of vitamin D, and that it may represent the storage form of vitamin D in these species in the same way as in mammals. High concentrations of vitamin D within iguanian embryos and egg yolks suggest a role for this compound in embryogenesis in these species, and perhaps indicates that there is a mechanism for vitamin D delivery to eggs comparable to that found in the domestic chicken.  相似文献   

18.

Background

Higher serum concentrations of 25-hydroxyvitamin D (25(OH)D), an indicator of vitamin D synthesis and intake, have been associated with better mental health and cognitive function. Concentrations of 1,25-dihydroxyvitamin D3 (the active vitamin D3 metabolite) have been associated with openness and extrovert behaviour, but 25(OH)D concentrations have not been associated with behavioural problems in humans.

Methods

We investigated the prospective association between the different forms of 25(OH)D - 25(OH)D3 and 25(OH)D2– and childhood behavioural problems in Avon Longitudinal Study of Parents and Children (ALSPAC). Serum 25(OH)D3 and 25(OH)D2 concentrations were assessed at mean age 9.9 years. Incident behavioural problems were assessed with Strengths and Difficulties Questionnaire (SDQ; emotional symptoms, conduct problems, hyperactivity-inattention problems, peer relationship problems and pro-social behaviour subscales and total difficulties score) at mean age 11.7. Sample sizes varied between 2413-2666 depending on the outcome.

Results

Higher 25(OH)D3 concentrations were weakly associated with lower risk of prosocial problems (fully adjusted odds ratio: OR (95% confidence interval: CI) 0.85 (0.74, 0.98)). Serum 25(OH)D3 or 25(OH)D2 concentrations were not associated with other subscales of SDQ or total difficulties score after adjusting for concfounders and other measured analytes related to vitamin D.

Conclusions

Our findings do not support the hypothesis that 25-hydroxyvitamin D status in childhood has important influences on behavioural traits in humans.  相似文献   

19.
Objective: To assess the influence of weight reduction therapy on serum osteoprotegerin (OPG) concentration in obese patients and compare these results with normal‐weight controls. Research Methods and Procedures: Forty‐three obese women (BMI, 36.7 ± 4.1 kg/m2; mean age, 50.1 ± 4.5 years) were studied. The control group consisted of 19 normal‐weight women (BMI, 24.2 ± 2.1 kg/m2; mean age, 53.8 ± 5.2 years). In all patients, serum concentrations of OPG, C telopeptide of type I collagen containing the cross‐linking site (CTX), osteocalcin, parathormone, 25‐(OH)‐D3 (vitamin D), and total calcium and phosphorus were assessed before and after a 3‐month weight reduction therapy. Results: In obese subjects, serum concentrations of OPG, 25‐(OH)‐D3, osteocalcin, total calcium, and phosphorus were significantly lower, and serum concentration of parathormone was significantly higher, before weight reduction therapy in comparison with normal‐weight controls. After weight reduction, a significantly higher serum concentration of 25‐(OH)‐D3 and CTX and significantly lower concentration of OPG were found. Discussion: Serum concentration of OPG was significantly lower in obese patients in comparison with normal‐weight controls. Weight reduction therapy resulted in further decrease in OPG serum concentrations. Therefore, OPG cannot be treated as a protective factor from bone loss in obese patients.  相似文献   

20.

Background

Interpretation of parathyroid hormone (iPTH) requires knowledge of vitamin D status that is influenced by season.

Objective

Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OH)D3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OH)D2] levels with PTH levels and total 25(OH)D levels.

Method

We retrospectively determined population weekly-mean concentrations of unpaired [25(OH)D2 and 25(OH)D3] and iPTH using 3.8 million laboratory results of adults. The 25(OH)D3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 32–40 and South <32 degrees. We analyzed PTH and total 25(OH)D separately in samples with detectable 25(OH)D2 (≥4 ng/mL).

Findings

Seasonal variation was observed for all genders and latitudes. 25(OH)D3 peaks occurred in September and troughs in March. iPTH levels showed an inverted pattern of peaks and troughs relative to 25(OH)D3, with a delay of 4 weeks. Vitamin D deficiency and insufficiency was common (33% <20 ng/mL; 60% <30 ng/mL) as was elevated iPTH levels (33%>65 pg/mL). The percentage of patients deficient in 25(OH)D3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OH)D2 had higher PTH levels and 57% of the samples with a total 25(OH)D > 50 ng/mL had detectable 25(OH)D2.

Interpretation

25(OH)D3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OH)D3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OH)D2, and thus are applicable for patient care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号