首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of sequencing approaches is an important aspect in the field of cancer genomics, where next‐generation sequencing has already been utilized for targeting oncogenes or tumour‐suppressor genes, that can be sequenced in a short time period. Alterations such as point mutations, insertions/deletions, copy number alterations, chromosomal rearrangements and epigenetic changes are encountered in cancer cell genomes, and application of various NGS technologies in cancer research will encounter such modifications. Rapid advancement in technology has led to exponential growth in the field of genomic analysis. The $1000 Genome Project (in which the goal is to sequence an entire human genome for $1000), and deep sequencing techniques (which have greater accuracy and provide a more complete analysis of the genome), are examples of rapid advancements in the field of cancer genomics. In this mini review, we explore sequencing techniques, correlating their importance in cancer therapy and treatment.  相似文献   

2.
It is generally accepted that cancers result from the aggregation of somatic mutations. The emergence of next-generation sequencing (NGS) technologies during the past half-decade has enabled studies of cancer genomes with high sensitivity and resolution through whole-genome and whole-exome sequencing approaches, among others. This saltatory advance introduces the possibility of assembling multiple cancer genomes for analysis in a cost-effective manner. Analytical approaches are now applied to the detection of a number of somatic genome alterations, including nucleotide substitutions, insertions/deletions, copy number variations, and chromosomal rearrangements. This review provides a thorough introduction to the cancer genomics pipeline as well as a case study of these methods put into practice.  相似文献   

3.
Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence.  相似文献   

4.
5.
A major challenge in genetics is identifying the basis of human heritable disease. We describe an "exon scanning" technique which surveys exons in genomic DNA for sequence alterations. By hybridizing genomic DNA to RNA probes derived from cDNAs, we can use RNase A to survey entire coding regions, comprising exons spread across extensive regions of genomic DNA, for mutations associated with genetic disease. Exon scanning of the beta-globin locus in the DNA of patients with 12 different hemoglobinopathies detected all of the culpable single base substitutions and deletions, but not single base insertions. Our analysis also revealed unsuspected polymorphisms and corrected a diagnosis originally based on hemoglobin electrophoresis. Exon scanning of the ornithine aminotransferase gene in a gyrate atrophy patient detected and localized a mutation in the sixth exon. Subsequent PCR amplification and sequencing characterized this as a missense mutation (proline----glutamine). Exon scanning of genomic DNA for sequence alterations, in combination with PCR amplification and sequencing, should be a generally useful strategy for evaluating suspect genes in disorders of unknown etiology, as well as for clinical diagnosis.  相似文献   

6.
Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function.  相似文献   

7.
It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.  相似文献   

8.
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low‐copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD‐rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome‐wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.  相似文献   

9.
Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR) gene in non-small cell lung cancer (NSCLC) and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS), including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples), were subjected to deep next generation sequencing (NGS). All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88%) cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12%) NGS resolved deletions not accurately characterized by SS. In 21 (20%) cases the NGS showed presence of complex (double/multiple) frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43%) tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.  相似文献   

10.
Splicing is a cellular mechanism, which dictates eukaryotic gene expression by removing the noncoding introns and ligating the coding exons in the form of a messenger RNA molecule. Alternative splicing (AS) adds a major level of complexity to this mechanism and thus to the regulation of gene expression. This widespread cellular phenomenon generates multiple messenger RNA isoforms from a single gene, by utilizing alternative splice sites and promoting different exon-intron inclusions and exclusions. AS greatly increases the coding potential of eukaryotic genomes and hence contributes to the diversity of eukaryotic proteomes. Mutations that lead to disruptions of either constitutive splicing or AS cause several diseases, among which are myotonic dystrophy and cystic fibrosis. Aberrant splicing is also well established in cancer states. Identification of rare novel mutations associated with splice-site recognition, and splicing regulation in general, could provide further insight into genetic mechanisms of rare diseases. Here, disease relevance of aberrant splicing is reviewed, and the new methodological approach of starting from disease phenotype, employing exome sequencing and identifying rare mutations affecting splicing regulation is described. Exome sequencing has emerged as a reliable method for finding sequence variations associated with various disease states. To date, genetic studies using exome sequencing to find disease-causing mutations have focused on the discovery of nonsynonymous single nucleotide polymorphisms that alter amino acids or introduce early stop codons, or on the use of exome sequencing as a means to genotype known single nucleotide polymorphisms. The involvement of splicing mutations in inherited diseases has received little attention and thus likely occurs more frequently than currently estimated. Studies of exome sequencing followed by molecular and bioinformatic analyses have great potential to reveal the high impact of splicing mutations underlying human disease.  相似文献   

11.
Esophageal squamous cell carcinoma(ESCC) has a high mortality rate. To determine the molecular basis of ESCC development, this study sought to identify characteristic genome-wide alterations in ESCC, including exonic mutations and structural alterations. The clinical implications of these genetic alterations were also analyzed. Exome sequencing and verification were performed for nine pairs of ESCC and the matched blood samples, followed by validation with additional samples using Sanger sequencing. Whole-genome SNP arrays were employed to detect copy number alteration(CNA) and loss of heterozygosity(LOH) in 55 cases, including the nine ESCC samples subjected to exome sequencing. A total of 108 non-synonymous somatic mutations(NSSMs) in102 genes were verified in nine patients. The chromatin modification process was found to be enriched in our gene ontology(GO) analysis. Tumor genomes with TP53 mutations were significantly more unstable than those without TP53 mutations. In terms of the landscape of genomic alterations, deletion of 9p21.3 covering CDKN2A/2B(30.9%), amplification of 11q13.3 covering CCND1(30.9%), and TP53 point mutation(50.9%) occurred in two-thirds of the cases. These results suggest that the deregulation of the G1 phase during the cell cycle is a key event in ESCC.Furthermore, six minimal common regions were found to be significantly altered in ESCC samples and three of them, 9p21.3, 7p11.2, and 3p12.1, were associated with lymph node metastasis. With the high correlation of TP53 mutation and genomic instability in ESCC, the amplification of CCND1, the deletion of CDKN2A/2B, and the somatic mutation of TP53 appear to play pivotal roles via G1 deregulation and therefore helps to classify this cancer into different genomic subtypes.These findings provide clinical significance that could be useful in future molecular diagnoses and therapeutic targeting.  相似文献   

12.
13.
Qu Zhang  Niclas Backström 《Chromosoma》2014,123(1-2):165-168
The complexity of eukaryote genomes makes assembly errors inevitable in the process of constructing reference genomes. Next-generation sequencing (NGS) could provide an efficient way to validate previously assembled genomes. Here, we exploited NGS data to interrogate the chicken reference genome and identified 35 pairs of nearly identical regions with >99.5 % sequence similarity and a median size of 109 kb. Several lines of evidence, including read depth, the composition of junction sequences, and sequence similarity, suggest that these regions present genome assembly errors and should be excluded from forthcoming genomic studies.  相似文献   

14.
Mitochondrial disorders are by far the most genetically heterogeneous group of diseases, involving two genomes, the 16.6 kb mitochondrial genome and ~ 1500 genes encoded in the nuclear genome. For maternally inherited mitochondrial DNA disorders, a complete molecular diagnosis requires several different methods for the detection and quantification of mtDNA point mutations and large deletions. For mitochondrial disorders caused by autosomal recessive, dominant, and X-linked nuclear genes, the diagnosis has relied on clinical, biochemical, and molecular studies to point to a group of candidate genes followed by stepwise Sanger sequencing of the candidate genes one-by-one. The development of Next Generation Sequencing (NGS) has revolutionized the diagnostic approach. Using massively parallel sequencing (MPS) analysis of the entire mitochondrial genome, mtDNA point mutations and deletions can be detected and quantified in one single step. The NGS approach also allows simultaneous analyses of a group of genes or the whole exome, thus, the mutations in causative gene(s) can be identified in one-step. New approaches make genetic analyses much faster and more efficient. Huge amounts of sequencing data produced by the new technologies brought new challenges to bioinformatics, analytical pipelines, and interpretation of numerous novel variants. This article reviews the clinical utility of next generation sequencing for the molecular diagnoses of complex dual genome mitochondrial disorders.  相似文献   

15.
Copy number variation (CNV) is a common chromosomal alteration that can occur during in vitro cultivation of human cells and can be accompanied by the accumulation of mutations in coding region sequences. We describe here a systematic application of current molecular technologies to provide a detailed understanding of genomic and sequence profiles of human embryonic stem cell (hESC) lines that were derived under GMP-compliant conditions. We first examined the overall chromosomal integrity using cytogenetic techniques to determine chromosome count, and to detect the presence of cytogenetically aberrant cells in the culture (mosaicism). Assays of copy number variation, using both microarray and sequence-based analyses, provide a detailed view genomic variation in these lines and shows that in early passage cultures of these lines, the size range and distribution of CNVs are entirely consistent with those seen in the genomes of normal individuals. Similarly, genome sequencing shows variation within these lines that is completely within the range seen in normal genomes. Important gene classes, such as tumor suppressors and genetic disease genes, do not display overtly disruptive mutations that could affect the overall safety of cell-based therapeutics. Complete sequence also allows the analysis of important transplantation antigens, such as ABO and HLA types. The combined application of cytogenetic and molecular technologies provides a detailed understanding of genomic and sequence profiles of GMP produced ES lines for potential use as therapeutic agents.  相似文献   

16.
The treatment paradigm of non-small cell lung cancer (NSCLC) has evolved into oncogene-directed precision medicine. Identifying actionable genomic alterations is the initial step towards precision medicine. An important scientific progress in molecular profiling of NSCLC over the past decade is the shift from the traditional piecemeal fashion to massively parallel sequencing with the use of next-generation sequencing (NGS). Another technical advance is the development of liquid biopsy with great potential in providing a dynamic and comprehensive genomic profiling of NSCLC in a minimally invasive manner. The integration of NGS with liquid biopsy has been demonstrated to play emerging roles in genomic profiling of NSCLC by increasing evidences. This review summarized the potential applications of NGS-based liquid biopsy in the diagnosis and treatment of NSCLC including identifying actionable genomic alterations, tracking spatiotemporal tumor evolution, dynamically monitoring response and resistance to targeted therapies, and diagnostic value in early-stage NSCLC, and discussed emerging challenges to overcome in order to facilitate clinical translation in future.  相似文献   

17.
Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today''s next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22–82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4–97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2–71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well.  相似文献   

18.
19.
Although new and emerging next-generation sequencing (NGS) technologies have reduced sequencing costs significantly, much work remains to implement them for de novo sequencing of complex and highly repetitive genomes such as the tetraploid genome of Upland cotton (Gossypium hirsutum L.). Herein we report the results from implementing a novel, hybrid Sanger/454-based BAC-pool sequencing strategy using minimum tiling path (MTP) BACs from Ctg-3301 and Ctg-465, two large genomic segments in A12 and D12 homoeologous chromosomes (Ctg). To enable generation of longer contig sequences in assembly, we implemented a hybrid assembly method to process ~35x data from 454 technology and 2.8-3x data from Sanger method. Hybrid assemblies offered higher sequence coverage and better sequence assemblies. Homology studies revealed the presence of retrotransposon regions like Copia and Gypsy elements in these contigs and also helped in identifying new genomic SSRs. Unigenes were anchored to the sequences in Ctg-3301 and Ctg-465 to support the physical map. Gene density, gene structure and protein sequence information derived from protein prediction programs were used to obtain the functional annotation of these genes. Comparative analysis of both contigs with Arabidopsis genome exhibited synteny and microcollinearity with a conserved gene order in both genomes. This study provides insight about use of MTP-based BAC-pool sequencing approach for sequencing complex polyploid genomes with limited constraints in generating better sequence assemblies to build reference scaffold sequences. Combining the utilities of MTP-based BAC-pool sequencing with current longer and short read NGS technologies in multiplexed format would provide a new direction to cost-effectively and precisely sequence complex plant genomes.  相似文献   

20.
Comparison of polymorphism at synonymous and non-synonymous sites in protein-coding DNA can provide evidence for selective constraint. Non-coding DNA that forms part of the regulatory landscape presents more of a challenge since there is not such a clear-cut distinction between sites under stronger and weaker selective constraint. Here, we consider putative regulatory elements termed Conserved Non-coding Elements (CNEs) defined by their high level of sequence identity across all vertebrates. Some mutations in these regions have been implicated in developmental disorders; we analyse CNE polymorphism data to investigate whether such deleterious effects are widespread in humans. Single nucleotide variants from the HapMap and 1000 Genomes Projects were mapped across nearly 2000 CNEs. In the 1000 Genomes data we find a significant excess of rare derived alleles in CNEs relative to coding sequences; this pattern is absent in HapMap data, apparently obscured by ascertainment bias. The distribution of polymorphism within CNEs is not uniform; we could identify two categories of sites by exploiting deep vertebrate alignments: stretches that are non-variant, and those that have at least one substitution. The conserved category has fewer polymorphic sites and a greater excess of rare derived alleles, which can be explained by a large proportion of sites under strong purifying selection within humans – higher than that for non-synonymous sites in most protein coding regions, and comparable to that at the strongly conserved trans-dev genes. Conversely, the more evolutionarily labile CNE sites have an allele frequency distribution not significantly different from non-synonymous sites. Future studies should exploit genome-wide re-sequencing to obtain better coverage in selected non-coding regions, given the likelihood that mutations in evolutionarily conserved enhancer sequences are deleterious. Discovery pipelines should validate non-coding variants to aid in identifying causal and risk-enhancing variants in complex disorders, in contrast to the current focus on exome sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号