首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα increases the translocation and insertion of Bax c-myc (an active form of Bax) into the outer membrane of yeast mitochondria. This is associated with an increase in cytochrome c (cyt c) release, reactive oxygen species production (ROS), mitochondrial network fragmentation and cell death. This cell death process is regulated, since it correlates with an increase in autophagy but not with plasma membrane permeabilization. The observed increase in Bax c-myc translocation and insertion by PKCα is not due to Bax c-myc phosphorylation, and the higher cell death observed is independent of the PKCα kinase activity. PKCα may therefore have functions other than its kinase activity that aid in Bax c-myc translocation and insertion into mitochondria. Together, these results give a mechanistic insight on apoptosis regulation by PKCα through regulation of Bax insertion into mitochondria.  相似文献   

2.
During atherogenesis, excess amounts of low-density lipoproteins (LDL) accumulate in the subendothelial space where they undergo oxidative modifications. Oxidized LDL (oxLDL) alter the fragile balance between survival and death of vascular smooth muscle cells (VSMC) thereby leading to plaque instability and finally to atherothrombotic events. As protein kinase C δ (PKCδ) is pro-apoptotic in many cell types, we investigated its potential role in the regulation of VSMC apoptosis induced by oxLDL. We found that human VSMC silenced for PKCδ exhibited a protection towards oxLDL-induced apoptosis. OxLDL triggered the activation of PKCδ as shown by its phosphorylation and nuclear translocation. PKCδ activation was dependent on the reactive oxygen species generated by oxLDL. Moreover, we demonstrated that PKCδ participates in oxLDL-induced endoplasmic reticulum (ER) stress-dependent apoptotic signaling mainly through the IRE1α/JNK pathway. Finally, the role of PKCδ in the development of atherosclerosis was supported by immunohistological analyses showing the colocalization of activated PKCδ with ER stress and lipid peroxidation markers in human atherosclerotic lesions. These findings highlight a role for PKCδ as a key regulator of oxLDL-induced ER stress-mediated apoptosis in VSMC, which may contribute to atherosclerotic plaque instability and rupture.  相似文献   

3.
The initiation and maintenance of reproductive function in mammals is critically dependent on the pulsatile secretion of gonadotropin‐releasing hormone (GnRH). This peptide drives the pulsatile release of FSH and LH from the pituitary pars distalis via signaling pathways that are activated by the type I GnRH receptor (GnRH‐R). Recently, a microarray analysis study reported that a number of genes, including mPer1, are induced by GnRH in immortalized gonadotrope cells. In view of these data, we have begun to analyze in detail the signaling pathways mediating the action of GnRH on mPer1 expression in these cells. Using quantitative real‐time polymprose cho read (PCR), we could confirm that exposure of immortalized gonadotropes (LβT2 cells) to the GnRH analog, buserelin, markedly induces mPer1 (but not mPer2) expression. Consistent with GnRH receptor signaling via the protein kinase (PK)‐C pathway, exposure of the cells to phorbol 12,13‐dibutyrate rapidly elevates both mPer1 and LHβ subunit mRNA levels, while pharmacological inhibition of PKC prevents the mPer1 and LHβ response to buserelin. As GnRH is known to regulate gonadotropin synthesis via activation of p42/44 mitogen‐activated protein kinase (MAPK) signaling pathways, we then examined the involvement of this pathway in regulating mPer1 expression in gonadotropes. Our data reveal that GnRH‐induced mPer1 expression is blocked following acute exposure to a MAPK kinase inhibitor. Although the involvement of this signaling mechanism in the regulation of mPer1 is known in neurons, e.g., in the suprachiasmatic nuclei, the induction of mPer1 in gonadotropes represents a novel mechanism of GnRH signaling, whose functional significance is still under investigation.  相似文献   

4.

Background

Protein kinase C ζ (PKCζ), an isoform of the atypical protein kinase C, is a pivotal regulator in cancer. However, the molecular and cellular mechanisms whereby PKCζ regulates tumorigenesis and metastasis are still not fully understood. In this study, proteomics and bioinformatics analyses were performed to establish a protein-protein interaction (PPI) network associated with PKCζ, laying a stepping stone to further understand the diverse biological roles of PKCζ.

Methods

Protein complexes associated with PKCζ were purified by co-immunoprecipitation from breast cancer cell MDA-MB-231 and identified by LC-MS/MS. Two biological replicates and two technical replicates were analyzed. The observed proteins were filtered using the CRAPome database to eliminate the potential false positives. The proteomics identification results were combined with PPI database search to construct the interactome network. Gene ontology (GO) and pathway analysis were performed by PANTHER database and DAVID. Next, the interaction between PKCζ and protein phosphatase 2 catalytic subunit alpha (PPP2CA) was validated by co-immunoprecipitation, Western blotting and immunofluorescence. Furthermore, the TCGA database and the COSMIC database were used to analyze the expressions of these two proteins in clinical samples.

Results

The PKCζ centered PPI network containing 178 nodes and 1225 connections was built. Network analysis showed that the identified proteins were significantly associated with several key signaling pathways regulating cancer related cellular processes.

Conclusions

Through combining the proteomics and bioinformatics analyses, a PKCζ centered PPI network was constructed, providing a more complete picture regarding the biological roles of PKCζ in both cancer regulation and other aspects of cellular biology.
  相似文献   

5.
The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1-40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1-40 -treated rats. The results show that the injection of   相似文献   

6.
Transforming growth factor beta (TGFβ) signaling is linked to the membrane trafficking of TGFβ receptors. The Protein Kinase C (PKC) family of serine/threonine kinases have been implicated in modulating the endocytic processes of various receptors. The present study investigated whether PKC activity plays a role in the trafficking, and signaling of TGFβ receptors, and further explored which PKC isoforms may be responsible for altered TGFβ signaling patterns. Using immunofluorescence microscopy and 125I-TGFβ internalization assays, we show that the pharmacological inhibition of PKC activity alters TGFβ receptor trafficking and delays TGFβ receptor degradation. Consistent with these findings, we demonstrate that PKC inhibition extends TGFβ-dependent Smad2 phosphorylation. Previous studies have shown that PKCζ associates with TGFβ receptors to modulate cell plasticity. We therefore used siRNA directed at the atypical PKC isoforms to investigate if reducing PKCι and PKCζ protein levels would delay TGFβ receptor degradation and extend TGFβ signaling. Our findings suggest that atypical PKC isoforms regulate TGFβ signaling by altering cell surface TGFβ receptor trafficking and degradation.  相似文献   

7.
The change of cholinergic transmission of ?-amyloid protein (β-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1—40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1—40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1—40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1—40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1—40-treated rats. The results show that the injection of β-AP1—40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.  相似文献   

8.
Cellular response to G(q)-linked agonists is shaped by regulatory inputs which determine signal strength and duration. Stimulation of phospholipase C-β (PLC-β) lipase activity results in an increase in the levels of diacylglycerol (DAG) and activation of protein kinase C (PKC) activity. PKC has been implicated in the feedback regulation of G(q) signaling through actions on PLC-β and phospholipase D (PLD) lipase activity. As PKC activity is modulated by multiple layers of regulation, the physiological impact of PKC on G(q) signaling is unclear. PKC signaling can be terminated by diacylglycerol kinases (DGKs) which are regulated in a cell-specific manner. The present studies investigated the contribution of the ubiquitously expressed DGKζ isoform in the regulation of PKC signaling and G(q) response in transfected COS-7 cells. Genetic depletion of DGKζ protein with antisense oligonucleotides dramatically reduced DAG metabolism. The sustained increase in PKC signaling was associated with a pronounced inhibition of carbachol-stimulated lipase activity in cells co-transfected with m1 muscarinic receptor, Gα(q) and either with or without PLC-β(1). The data also reveal that sustained activation of PKC alone does not increase cellular PLD1 activity. Therefore, G(12)-activated RhoA is physiologically important for adequate stimulation of PLD1 activity. These data show that the impact of PKC on G(q) signal transduction is determined by the background of cell-specific processes.  相似文献   

9.
Previous studies have demonstrated a role for angiotensin II (AngII) and myofibroblasts (myoFb) in cardiac fibrosis. However, the role of PKC-δ in AngII mediated cardiac fibrosis is unclear. Therefore, the present study was designed to investigate the role of PKC-δ in AngII induced cardiac collagen expression and fibrosis. AngII treatment significantly (p < 0.05) increased myoFb collagen expression, whereas PKC-δ siRNA treatment or rottlerin, a PKC-δ inhibitor abrogated (p < 0.05) AngII induced collagen expression. MyoFb transfected with PKC-δ over expression vector showed significant increase (p < 0.05) in the collagen expression as compared to control. Two weeks of chronic AngII infused rats showed significant (p < 0.05) increase in collagen expression compared to sham operated rats. This increase in cardiac collagen expression was abrogated by rottlerin treatment. In conclusion, both in vitro and in vivo data strongly suggest a role for PKC-δ in AngII induced cardiac fibrosis.  相似文献   

10.
α-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with α-tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of α-tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that α-tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

11.
Phosphorylation of theα subunit of the sodium channel by protein kinase C   总被引:5,自引:0,他引:5  
The alpha subunit of the purified voltage-sensitive sodium channel from rat brain is rapidly phosphorylated to the extent of 3-4 mol phosphate/mol by purified protein kinase C. The alpha subunit of the native sodium channel in synaptosomal membranes is also phosphorylated by added protein kinase C as assessed by specific immunoprecipitation and polyacrylamide gel electrophoresis of labeled membranes. Our results suggest coordinate regulation of sodium channel phosphorylation state by cAMP-dependent and calcium/phospholipid-dependent protein kinases.  相似文献   

12.
Wounded cells such as Xenopus oocytes respond to damage by assembly and closure of an array of actin filaments and myosin-2 controlled by Rho GTPases, including Rho and Cdc42. Rho and Cdc42 are patterned around wounds in a characteristic manner, with active Rho concentrating in a ring-like zone inside a larger, ring-like zone of active Cdc42. How this patterning is achieved is unknown, but Rho and Cdc42 at wounds are subject to regulation by other proteins, including the protein kinases C. Specifically, Cdc42 and Rho activity are enhanced by PKCβ and inhibited by PKCη. We adapt a mathematical model of Simon and coworkers to probe the possible roles of these kinases. We show that PKCβ likely affects the magnitude of positive Rho–Abr feedback, whereas PKCη acts on Cdc42 inactivation. The model explains both qualitative and some overall quantitative features of PKC–Rho GTPase regulation. It also accounts for the previous, peculiar observation that ∼20% of cells overexpressing PKCη display zone inversions—that is, displacement of active Rho to the outside of the active Cdc42.  相似文献   

13.
14.
The alpha isoform of protein kinase C (PKC) is rapidly hydrolyzed by mM Ca2+-requiring calpain (calcium-activated neutral proteinase) under cell-free conditions (Shea et al, 1994, FEBS Lett. 350: 223). In the present study, we demonstrate that this hydrolysis is inhibited by phosphatidyl serine, diacylglycerol, phosphatidyl choline, phosphatidyl inositol, and phosphatidic acid. With the exception of phosphatidic acid, these phospholipids did not directly inhibit calpain activity as evidenced by degradation of [14C]azocasein, suggesting that the nature of inhibition of calpain-mediated PKC degradation is due to an effect of phospholipids on PKC conformation. These findings suggest that m calpain-mediated PKC hydrolysis may be specifically minimized at the plasma membrane, and leave open the possibility that such a mechanism exists in situ. In addition, the unique inhibition of calpain activity by phosphatidic acid suggests the existence of a specific mechanism by which this phospholipid regulates PKC activity.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

15.
We reported previously that translationally controlled tumor protein (TCTP) is a cytoplasmic repressor of Na,K-ATPase in HeLa cells. In the current study, we showed that TCTP overexpression using adenovirus as vehicle, induced partial inhibition of Na,K-ATPase; phosphorylation of EGFR tyrosine residues 845, 992, 1068, and 1148; activation of Ras/Raf/ERK pathway; activation of PI3K/Akt pathway; and phosphorylation of PLC-γ in HeLa cells. Specific inhibition of PI3K/Akt pathway in contrast to the inhibition of ERK, significantly decreased TCTP overexpression-induced survival signal. Inhibition of PLC-γ pathway significantly decreased TCTP overexpression-induced cell migration but inhibition of ERK had less effect. These results suggest that TCTP plays a key physiological role in cell survival through Akt pathway and migration through PLC-γ pathway.  相似文献   

16.
Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in Western societies, affecting one in four adults in the USA, and is strongly associated with hepatic insulin resistance, a major risk factor in the pathogenesis of type 2 diabetes. Although the cellular mechanisms underlying this relationship are unknown, hepatic accumulation of diacylglycerol (DAG) in both animals and humans has been linked to hepatic insulin resistance. In this Perspective, we discuss the role of DAG activation of protein kinase Cε as the mechanism responsible for NAFLD-associated hepatic insulin resistance seen in obesity, type 2 diabetes, and lipodystrophy.  相似文献   

17.
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 ?, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.  相似文献   

18.
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P), and various roles for the CerK/C1P pathway in the regulation of cellular/biological functions have been demonstrated. CerK is constitutively phosphorylated at several serine (Ser, S) residues, however, the roles of Ser residues, including their phosphorylation, in CerK activity, have not yet been elucidated in detail. Therefore, we conducted the present study to investigate this issue. In A549 cells expressing wild-type CerK, a treatment with phorbol 12-myristate 13-acetate (PMA) decreased the formation of C1P in a protein kinase C (PKC)-βI/II-mediated manner. In the Phos-tag SDS-PAGE analysis, CerK existed in its phosphorylated form and was further phosphorylated by the PMA treatment in a PKC-βI/II-mediated manner. We examined the effects of the displacement of Ser residues (72/300/340/403/408/427) in CerK by alanine (Ala, A) on its activity and phosphorylation. Triple mutations (S340/408/427A), but not a single or double mutations (S340/408A), in CerK significantly decreased the formation of C1P. PMA-induced phosphorylation levels in S340/408A- and S340/408/427A-CerK were significantly and maximally reduced, respectively, but were similar in CerK with a single mutation and wild-type CerK. Ser residue mutations tested, including six mutations, did not affect PMA-induced decreases in C1P formation more than expected. Treatments with the protein phosphatase inhibitors, okadaic acid and cyclosporine A, decreased the formation of C1P. These results demonstrated that the activity of CerK was regulated in a phosphorylation-dependent manner in cells.  相似文献   

19.
Cellular senescence is a process wherein proliferating cells undergo permanent cell cycle arrest while remaining viable. Senescence results in enhanced secretion of proteins that promote cancer and inflammation. We report here that the structure of the Golgi complex which regulates secretion is altered in senescent cells. In cells where senescence is achieved by replicative exhaustion or in cells wherein senescence has been induced with BrdU treatment dependent stress, the Golgi complex is dispersed. The expression of a G protein γ subunit, γ11, capable of translocation from the plasma membrane to the Golgi complex on receptor activation increases with senescence. Knockdown of γ11 or overexpression of a dominant negative γ3 subunit inhibits Golgi dispersal induced by senescence. Overall these results suggest that in cellular senescence an upregulated G protein gamma subunit mediates alterations in the structure of the Golgi.  相似文献   

20.
Summary Colocalization of calcitonin gene-related peptide (CGRP) and protein kinase C -subtype (PKC-) like immunoreactivities (LI) and the subcellular localization of CGRP-LI were studied in the ventral horn of rat spinal cord. Ultrastructurally CGRP-LI was localized on the membranes of the Golgi-complexes, in multivesicular bodies and in vesicles adjacent to the Golgi-complex in motoneuron perikarya. The colocalization of PKC- and CGRP-LI was detected in most of the ventral horn motoneurons. However, few motoneurons were only PKC--immunoreactive. These results suggest that PKC- may be involved in the regulation of CGRP release from motoric axon terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号