首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri-/- MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri Adelta1-6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri Adelta1-6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri Adelta1-6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri-/- MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri-/- MEF adipocytes expressing Peri Adelta1-6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.  相似文献   

2.
Phosphorylation of the lipid droplet-associated protein perilipin A (Peri A) mediates the actions of cyclic AMP-dependent protein kinase A (PKA) to stimulate triglyceride hydrolysis (lipolysis) in adipocytes. Studies addressing how Peri A PKA sites regulate adipocyte lipolysis have relied on non-adipocyte cell models, which express neither adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triglyceride catabolism in mice, nor the "downstream" lipase, hormone-sensitive lipase (HSL). ATGL and HSL are robustly expressed by adipocytes that we generated from murine embryonic fibroblasts of perilipin knock-out mice. Adenoviral expression of Peri A PKA site mutants in these cells reveals that mutation of serine 517 alone is sufficient to abrogate 95% of PKA (forskolin)-stimulated fatty acid (FA) and glycerol release. Moreover, a "phosphomimetic" (aspartic acid) substitution at serine 517 enhances PKA-stimulated FA release over levels obtained with wild type Peri A. Studies with ATGL-and HSL-directed small hairpin RNAs demonstrate that 1) ATGL activity is required for all PKA-stimulated FA and glycerol release in murine embryonic fibroblast adipocytes and 2) all PKA-stimulated FA release in the absence of HSL activity requires serine 517 phosphorylation. These results provide the first demonstration that Peri A regulates ATGL-dependent lipolysis and identify serine 517 as the Peri A PKA site essential for this regulation. The contributions of other PKA sites to PKA-stimulated lipolysis are manifested only in the presence of phosphorylated or phosphomimetic serine 517. Thus, serine 517 is a novel "master regulator" of PKA-stimulated adipocyte lipolysis.  相似文献   

3.
Lipolysis is primarily regulated by protein kinase A (PKA), which phosphorylates perilipin and hormone-sensitive lipase (HSL), and causes translocation of HSL from cytosol to lipid droplets in adipocytes. Perilipin coats lipid droplet surface and assumes to prevent lipase access to triacylglycerols, thus inhibiting basal lipolysis; phosphorylated perilipin facilitates lipolysis on PKA activation. Here, we induced lipolysis in primary rat adipocytes by inhibiting protein serine/threonine phosphatase with specific inhibitors, okadaic acid and calyculin. The incubation with calyculin promotes incorporation of 32Pi into perilipins, thus, confirming that perilipin is hyperphosphorylated. The lipolysis response to calyculin is gradually accompanied by increased accumulation of phosphorylated perilipin A in a concentration- and time-responsive manner. When perilipin phosphorylation is abrogated by the addition of N-ethylmaleimide, lipolysis ceases. Different from a considerable translocation of HSL upon PKA activation with isoproterenol, calyculin does not alter HSL redistribution in primary or differentiated adipocytes, as confirmed by both immunostaining and immunoblotting. Thus, we suggest that inhibition of the phosphatase by calyculin activates lipolysis via promoting perilipin phosphorylation rather than eliciting HSL translocation in adipocytes. Further, we show that when the endogenous phosphatase is inhibited by calyculin, simultaneous PKA activation with isoproterenol converts most of the perilipin to the hyperphosphorylated species, and induces enhanced lipolysis. Apparently, as PKA phosphorylates perilipin and stimulates lipolysis, the phosphatase acts to dephosphorylate perilipin and attenuate lipolysis. This suggests a two-step strategy governed by a kinase and a phosphatase to modulate the steady state of perilipin phosphorylation and hence the lipolysis response to hormonal stimulation.  相似文献   

4.
脂滴包被蛋白(perilipin)调控脂肪分解   总被引:8,自引:0,他引:8  
Xu C  He JH  Xu GH 《生理科学进展》2006,37(3):221-224
脂滴包被蛋白(perilipin)包被在脂肪细胞和甾体生成细胞脂滴表面。基础状态下perilipin可减少甘油三酯水解,使其贮备增加;脂肪分解时磷酸化的perilipin能促进甘油三酯水解,而且该蛋白对激素敏感脂酶从胞浆向脂滴转位是必需的。据推测,perilipin可能在脂肪分解调控中起到“分子开关”的作用。蛋白激酶A(PKA)、细胞外信号调节激酶(ERK)等信号转导通路参与了脂肪分解。肿瘤坏死因子仅(TNFα)、过氧化物酶体增殖物激活受体γ(PPAγ)激动剂、瘦素(leptin)均可以影响perilipin的表达。新近研究表明,perilipin可通过蛋白酶体途径来调节其蛋白量的表达。脂肪分解调控中的关键蛋白perilipin可以和2型糖尿病、肥胖、动脉粥样硬化等多种代谢性疾病及心血管疾病联系起来。  相似文献   

5.
Hormonally stimulated lipolysis occurs by activation of cyclic AMP-dependent protein kinase (PKA) which phosphorylates hormone-sensitive lipase (HSL) and increases adipocyte lipolysis. Evidence suggests that catecholamines not only can activate PKA, but also the mitogen-activated protein kinase pathway and extracellular signal-regulated kinase (ERK). We now demonstrate that two different inhibitors of MEK, the upstream activator of ERK, block catecholamine- and beta(3)-stimulated lipolysis by approximately 30%. Furthermore, treatment of adipocytes with dioctanoylglycerol, which activates ERK, increases lipolysis, although MEK inhibitors decrease dioctanoylglycerol-stimulated activation of lipolysis. Using a tamoxifen regulatable Raf system expressed in 3T3-L1 preadipocytes, exposure to tamoxifen causes a 14-fold activation of ERK within 15-30 min and results in approximately 2-fold increase in HSL activity. In addition, when differentiated 3T3-L1 cells expressing the regulatable Raf were exposed to tamoxifen, a 2-fold increase in lipolysis is observed. HSL is a substrate of activated ERK and site-directed mutagenesis of putative ERK consensus phosphorylation sites in HSL identified Ser(600) as the site phosphorylated by active ERK. When S600A HSL was expressed in 3T3-L1 cells expressing the regulatable Raf, tamoxifen treatment fails to increase its activity. Thus, activation of the ERK pathway appears to be able to regulate adipocyte lipolysis by phosphorylating HSL on Ser(600) and increasing the activity of HSL.  相似文献   

6.
Perilipin (Peri) A is a phosphoprotein located at the surface of intracellular lipid droplets in adipocytes. Activation of cyclic AMP-dependent protein kinase (PKA) results in the phosphorylation of Peri A and hormone-sensitive lipase (HSL), the predominant lipase in adipocytes, with concurrent stimulation of adipocyte lipolysis. To investigate the relative contributions of Peri A and HSL in basal and PKA-mediated lipolysis, we utilized NIH 3T3 fibroblasts lacking Peri A and HSL but stably overexpressing acyl-CoA synthetase 1 (ACS1) and fatty acid transport protein 1 (FATP1). When incubated with exogenous fatty acids, ACS1/FATP1 cells accumulated 5 times more triacylglycerol (TG) as compared with NIH 3T3 fibroblasts. Adenoviral-mediated expression of Peri A in ACS1/FATP1 cells enhanced TG accumulation and inhibited lipolysis, whereas expression of HSL fused to green fluorescent protein (GFPHSL) reduced TG accumulation and enhanced lipolysis. Forskolin treatment induced Peri A hyperphosphorylation and abrogated the inhibitory effect of Peri A on lipolysis. Expression of a mutated Peri A Delta 3 (Ser to Ala substitutions at PKA consensus sites Ser-81, Ser-222, and Ser-276) reduced Peri A hyperphosphorylation and blocked constitutive and forskolin-stimulated lipolysis. Thus, perilipin expression and phosphorylation state are critical regulators of lipid storage and hydrolysis in ACS1/FATP1 cells.  相似文献   

7.
Role of PAT proteins in lipid metabolism   总被引:17,自引:0,他引:17  
One of the central reactions in bodily energy metabolism is lipolysis in adipocytes, the reaction that governs the release of stored fatty acids from the adipocyte triacylglycerol pool, which constitutes the major energy reserve in animals. These fatty acids are then transported by serum albumin to various tissues to supply their energy requirements. This reaction was previously thought to result from phosphorylation and activation of hormone-sensitive lipase by protein kinase A (PKA) but is now known to be governed by a translocation of the lipase from the cytosol to the surface of the intracellular lipid droplet that houses the reservoir of TAG. This droplet is coated with perilipin A, which is also phosphorylated by PKA in response to lipolytic stimuli, and phosphorylation of perilipin A is essential for HSL translocation and stimulated lipolysis.  相似文献   

8.
Our previous studies have demonstrated that natriuretic peptides (NPs), peptide hormones with natriuretic, diuretic, and vasodilating properties, exert a potent control on the lipolysis in human adipocytes via the activation of the type A guanylyl cyclase receptor (1, 2). In the current study we investigated the intracellular mechanisms involved in the NP-stimulated lipolytic effect in human preadipocytes and adipocytes. We demonstrate that the atrial NP (ANP)-induced lipolysis in human adipocytes was associated with an enhanced serine phosphorylation of the hormone-sensitive lipase (HSL). Both ANP-mediated lipolysis and HSL phosphorylation were inhibited in the presence of increasing concentrations of the guanylyl cyclase inhibitor LY-83583. ANP did not modulate the activity of the cAMP-dependent protein kinase (PKA). Moreover, H-89, a PKA inhibitor, did not affect the ANP-induced lipolysis. On primary cultures of human preadipocytes, the ANP-mediated lipolytic effect was dependent on the differentiation process. On differentiated human preadipocytes, ANP-mediated lipolysis, associated with an increased phosphorylation of HSL and of perilipin A, was strongly decreased by treatment with the inhibitor of the cGMP-dependent protein kinase I (cGKI), Rp-8-pCPT-cGMPS. Thus, ANP-induced lipolysis in human adipocytes is a cGMP-dependent pathway that induces the phosphorylation of HSL and perilipin A via the activation of cGKI. The present study shows that lipolysis in human adipocytes can be controlled by an independent cGKI-mediated signaling as well as by the classical cAMP/PKA pathway.  相似文献   

9.
雌激素受体关联受体α 调节脂肪细胞甘油三酯分解   总被引:2,自引:0,他引:2  
雌激素受体关联受体a (Estrogen-related receptor a,ERRα) 是调控机体能量代谢的关键转录调控因子,也是脂肪生成的关键调控者。为研究ERRα对脂肪细胞甘油三酯分解的影响及其分子机制,分化的猪脂肪细胞在PKA (Protein kinase A) 或/和ERK (Extracellular signal-related kinase) 抑制剂预处理和不处理的情况下,再用Ad-ERRα侵染或XCT790处理48 h。通过测定脂肪细胞中甘油三酯浓度和培养液中的甘油释放量分析脂肪细胞的脂解变化;Western blotting方法检测PPARγ (Peroxisome proliferator-activated receptor γ,PPARγ)、perilipin A、p-perilipin A、HSL (Hormone sensitive lipase,HSL) 和ATGL (Adipose triglyceride lipase,ATGL) 蛋白表达。结果显示,ERRα显著促进猪脂肪细胞分化及甘油三酯积累,同时促进了甘油三酯水解;分别及同时阻断PKA和ERK通路并不影响ERRα对脂肪细胞甘油释放的促进作用;ERRα显著上调HSL、ATGL、PPARγ及perilipin A蛋白表达,但p-perilipin A水平并未发生变化。推测过量表达ERRα可能导致HSL和ATGL蛋白表达上调并促进甘油三酯水解,从而为脂肪细胞分化提供更多的游离脂肪酸 (Free fat acid,FFA) 作为甘油三酯合成周转的底物。  相似文献   

10.
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.  相似文献   

11.
The aims of the present study were to examine the effect of magnolol on lipolysis in sterol ester (SE)-loaded 3T3-L1 preadipocytes and to determine the signaling mechanism involved. We demonstrate that magnolol treatment resulted in a decreased number and surface area of lipid droplets, accompanied by release of glycerol. The lipolytic effect of magnolol was not mediated by PKA based on the facts that magnolol did not induce an elevation of intracellular cAMP levels, and protein kinase A (PKA) inhibitor KT5720 did not block magnolol-induced lipolysis. Calcium/calmodulin-dependent protein kinase (CaMK) was involved in this signaling pathway, since magnolol-induced a transient rise of intracellular [Ca(2+)] and Ca(2+) influx across the plasma membrane, and CaMK inhibitor significantly abolished magnolol-induced lipolysis. Moreover, magnolol increased the relative levels of phosphorylated extracellular signal-related kinases (ERK1 and ERK2). In support of the involvement ERK, we demonstrated that magnolol-induced lipolysis was inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK), and PD98059 reversed magnolol-induced ERK phosphorylation. Further, the relationship between CaMK and ERK was connected by the finding that CaMK inhibitor also blocked magnolol-induced ERK phosphorylation. Taken together, these findings suggest that magnolol-induced lipolysis is both CaMK- and ERK-dependent, and this lipolysis signaling pathway is distinct from the traditional PKA pathway. ERK phosphorylation is reported to enhance lipolysis by direct activation of hormone sensitive lipase (HSL), thus magnolol may likely activate HSL through ERK and increase lipolysis of adipocytes.  相似文献   

12.
Melanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant. The activity of hormone-sensitive lipase, a rate-limiting enzyme, which is involved in lipolysis, was significantly increased by MSH treatment. In addition, a variety of kinases, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) were also phosphorylated as the result of MSH treatment, and their specific inhibitors caused a reduction in MSH-induced glycerol release and HSL activity, indicating that MSH-induced lipolysis was mediated by these kinases. These results suggest that PKA and ERK constitute the principal signaling pathways implicated in the MSH-induced lipolytic process via the regulation of HSL in 3T3-L1 adipocytes.  相似文献   

13.
Ho PC  Chuang YS  Hung CH  Wei LN 《Cellular signalling》2011,23(8):1396-1403
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.  相似文献   

14.
15.
The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression.  相似文献   

16.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   

17.
In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A) is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL, and HSL) has been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of protein kinase A (PKA) stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by the expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA stimulation.  相似文献   

18.
A possible mechanism(s) behind exercise training-enhanced lipolysis was investigated in rat adipocytes. Exercise training (9 weeks; running) enhanced the activity of cAMP-dependent protein kinase (PKA) and the protein expressions of PKA subunits (catalytic, RII alpha, and RII beta) in P(40) fraction (sedimenting at 40,000g), but not in I(40) fraction (infranatant of 40,000g) of adipocyte homogenate. The expression of PKA-anchoring protein 150 (AKAP150) in P(40) fraction was greater in exercise-trained (TR) than in control (C) rats. Hormone-sensitive lipase (HSL) activities in both fractions were also greater in TR. On the other hand, stimulated lipolysis was accompanied by increased activities of HSL in P(40) but not in I(40) fraction. The decreases in stimulated lipolysis due to St-Ht31 were greater in TR rats. Thus, the mechanisms behind exercise training-enhanced adipocyte lipolysis could involve the increased activities of PKA and HSL with enhanced expressions of AKAP150 and some subunits of PKA, all of which may be compartmentalized within adipocytes.  相似文献   

19.
Rosiglitazone regulates IL-6-stimulated lipolysis in porcine adipocytes   总被引:1,自引:0,他引:1  
Interleukin (IL)-6, a proinflammatory cytokine, stimulates adipocyte lipolysis and induces insulin resistance in obese and diabetic subjects. However, the effects of the anti-diabetic drug rosiglitazone on IL-6-stimulated lipolysis and the underlying molecular mechanism are largely unknown. In this study, we demonstrated that rosiglitazone suppressed IL-6-stimulated lipolysis in differentiated porcine adipocytes by inactivation of extracellular signal-related kinase (ERK). Meanwhile, rosiglitazone enhanced the lipolysis response of adipocytes to isoprenaline. In addition, rosiglitazone significantly reversed IL-6-induced down-regulation of several genes such as perilipin A, peroxisome proliferators activated receptor gamma (PPARγ), and fatty acid synthetase, as well as the up-regulation of IL-6 mRNA. However, mRNA expression of PPARγ coactivator-1 alpha (PCG-1α) was enhanced by rosiglitazone in IL-6-stimulated adipocytes. These results indicate that rosiglitazone suppresses IL-6-stimulated lipolysis in porcine adipocytes through multiple molecular mechanisms.  相似文献   

20.
Perilipin A coats the lipid storage droplets in adipocytes and is polyphosphorylated by protein kinase A (PKA); the fact that PKA activates lipolysis in adipocytes suggests a role for perilipins in this process. To assess whether perilipins participate directly in PKA-mediated lipolysis, we have expressed constructs coding for native and mutated forms of the two major splice variants of the perilipin gene, perilipins A and B, in Chinese hamster ovary fibroblasts. Perilipins localize to lipid droplet surfaces and displace the adipose differentiation-related protein that normally coats the droplets in these cells. Perilipin A inhibits triacylglycerol hydrolysis by 87% when PKA is quiescent, but activation of PKA and phosphorylation of perilipin A engenders a 7-fold lipolytic activation. Mutation of PKA sites within the N-terminal region of perilipin abrogates the PKA-mediated lipolytic response. In contrast, perilipin B exerts only minimal protection against lipolysis and is unresponsive to PKA activation. Since Chinese hamster ovary cells contain no PKA-activated lipase, we conclude that the expression of perilipin A alone is sufficient to confer PKA-mediated lipolysis in these cells. Moreover, the data indicate that the unique C-terminal portion of perilipin A is responsible for its protection against lipolysis and that phosphorylation at the N-terminal PKA sites attenuates this protective effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号