首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to record dynamic and muscular modifications during push-up exercise variants (EV). Eight healthy men performed 6 EV of push-ups: normal, abducted, adducted, posterior, anterior, and on knees. Ground-reaction forces were recorded with a force plate while surface muscular activity with electrodes on triceps and pectoralis major. Significant differences (p < 0.05) existed for most vertical force variables but not for anteroposterior force and time variables. The initial load relative to body weight was 66.4% at the normal position, while only 52.9% at the on-knees EV. Muscle activity was less during the on-knees EV for both muscles. At the posterior EV, pectoralis major was activated higher than normal; however, triceps were activated lower than normal. Dynamic behavior and muscle activity were significantly altered between push-up EV. Instructions for push-up exercises should be followed carefully because dynamic and muscular challenge is altered when hands are differently positioned.  相似文献   

2.
Push-ups are a common and practical exercise that is used to enhance fitness, including upper body strength or endurance. The kinetic characteristics of push-ups and its variations are yet to be quantified. Kinetic quantification is necessary to accurately evaluate the training load, and thus the nature of the training stimulus, for these exercise variations. This study assessed the peak vertical ground reaction forces (GRFs) of push-up variations including the regular push-up and those performed with flexed knee, feet elevated on a 30.48-cm box, and a 60.96-cm box, and hands elevated on a 30.48-cm box and a 60.96-cm box. Twenty-three recreationally fit individuals (14 men, 9 women) performed each of the 6 push-up variations in a randomized order. Peak GRF and peak GRF expressed as a coefficient of subject body mass were obtained with a force platform. Push-ups with the feet elevated produced a higher GRF than all other push-up variations (p ≤ 0.05). Push-ups with hands elevated and push-ups from the flexed knee position produced a lower GRF than all other push-up variations (p ≤ 0.05). No gender differences in response to these push-up variations were found (p > 0.05). Additionally, subject height was not related to the GRF for any of the push-up conditions (p > 0.05) other than the condition where hands were elevated on a 60.96-cm box (p ≤ 0.05; r = 0.63). These data can be used to progress the intensity of push-ups in a program and to quantify the training load as a percentage of body mass.  相似文献   

3.
Compared with lower extremity plyometrics, data concerning the loads and intensity associated with upper extremity plyometrics are limited. The purpose of this study was to compare vertical ground reaction force (vGRF) characteristics between the clap push-up and box drop push-ups from 3.8 cm (BD1), 7.6 cm (BD2), and 11.4 cm (BD3) heights and limbs (dominant, nondominant). Twenty-two healthy active male subjects (age 25.9 ± 1.3 years, height 1.8 ± 0.08 m, mass 87.6 ± 12 kg) performed 4 repetitions of each push-up variation in a random order. Four dependent variables, peak vGRF, time-to-peak vGRF, loading rate (LR), and propulsion rate (PR) were calculated for each extremity. Statistical analysis consisted of separate limb by variation repeated measures analysis of variance. In addition, ground contact time (GCT) was statistically compared between variations. The GCT for the clap push-up (p = 0.033) was significantly less than that for BD1 and BD2. No significant differences were revealed for time-to-peak vGRF (p = 0.717). Peak vGRF was significant between dominant and nondominant limbs (p = 0.045). Post hoc analysis of a significant limb by variation interaction in LR (p < 0.001) revealed the dominant limb to be significantly greater than the nondominant one in all 4 push-up variations. Furthermore, for both limbs, the clap LR was significantly greater than BD1, BD2, and BD3. The clap PR was significantly greater than BD1, BD2, and BD3. These data add rationale for determining upper extremity plyometric progression. The peak vGRFs are similar, and altering the box height did not affect peak vGRF. In contrast, the clap demonstrated the highest LR and PR suggesting that it may be a more powerful exercise than BD1, BD2, and BD3. The higher LR (Clap and BD3) for the dominant extremity illustrates bilateral disparity in the rate of eccentric loading.  相似文献   

4.
Popular fitness literature suggests that varied hand placements during push-ups may isolate different muscles. Scientific literature, however, offers scant evidence that varied hand placements elicit different muscle responses. This study examined whether different levels of electromyographic (EMG) activity in the pectoralis major and triceps brachii muscles are required to perform push-ups from each of 3 different hand positions: shoulder width base, wide base, and narrow base hand placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each push-up. The EMG activity for subjects' dominant arm pectoralis major and triceps brachii was recorded using surface electrodes. The EMG activity was greater in both muscle groups during push-ups performed from the narrow base hand position compared with the wide base position (p < 0.05). This study suggests that, if a goal is to induce greater muscle activation during exercise, then push-ups should be performed with hands in a narrow base position compared with a wide base position.  相似文献   

5.
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p = 0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p = 0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface.  相似文献   

6.
Because the intensity of plyometric exercises usually is based simply upon anecdotal recommendations rather than empirical evidence, this study sought to quantify a variety of these exercises based on forces placed upon the knee. Six National Collegiate Athletic Association Division I athletes who routinely trained with plyometric exercises performed depth jumps from 46 and 61 cm, a pike jump, tuck jump, single-leg jump, countermovement jump, squat jump, and a squat jump holding dumbbells equal to 30% of 1 repetition maximum (RM). Ground reaction forces obtained via an AMTI force plate and video analysis of markers placed on the left hip, knee, lateral malleolus, and fifth metatarsal were used to estimate rate of eccentric force development (E-RFD), peak ground reaction forces (GRF), ground reaction forces relative to body weight (GRF/BW), knee joint reaction forces (K-JRF), and knee joint reaction forces relative to body weight (K-JRF/BW) for each plyometric exercise. One-way repeated measures analysis of variance indicated that E-RFD, K-JRF, and K-JRF/BW were different across the conditions (p < 0.05), but peak GRF and GRF/BW were not (p > 0.05). Results indicate that there are quantitative differences between plyometric exercises in the rate of force development during landing and the forces placed on the knee, though peak GRF forces associated with landing may not differ.  相似文献   

7.
The purpose of the present study was to assess the relationships between maximal strength and muscular endurance test scores additionally to previously widely studied measures of body composition and maximal aerobic capacity. 846 young men (25.5 ± 5.0 yrs) participated in the study. Maximal strength was measured using isometric bench press, leg extension and grip strength. Muscular endurance tests consisted of push-ups, sit-ups and repeated squats. An indirect graded cycle ergometer test was used to estimate maximal aerobic capacity (V(O2)max). Body composition was determined with bioelectrical impedance. Moreover, waist circumference (WC) and height were measured and body mass index (BMI) calculated. Maximal bench press was positively correlated with push-ups (r = 0.61, p < 0.001), grip strength (r = 0.34, p < 0.001) and sit-ups (r = 0.37, p < 0.001) while maximal leg extension force revealed only a weak positive correlation with repeated squats (r = 0.23, p < 0.001). However, moderate correlation between repeated squats and V(O2)max was found (r = 0.55, p < 0.001) In addition, BM and body fat correlated negatively with muscular endurance (r = -0.25 - -0.47, p < 0.001), while FFM and maximal isometric strength correlated positively (r = 0.36-0.44, p < 0.001). In conclusion, muscular endurance test scores were related to maximal aerobic capacity and body fat content, while fat free mass was associated with maximal strength test scores and thus is a major determinant for maximal strength. A contributive role of maximal strength to muscular endurance tests could be identified for the upper, but not the lower extremities. These findings suggest that push-up test is not only indicative of body fat content and maximal aerobic capacity but also maximal strength of upper body, whereas repeated squat test is mainly indicative of body fat content and maximal aerobic capacity, but not maximal strength of lower extremities.  相似文献   

8.
The purpose of this study was to concurrently determine the effect that plyometric and isometric training has on tendon stiffness (K) and muscle output characteristics to compare any subsequent changes. Thirteen men trained the lower limbs either plyometrically or isometrically 2-3 times a week for a 6-week period. Medial gastrocnemius tendon stiffness was measured in vivo using ultrasonography during ramped isometric contractions before and after training. Mechanical output variables were measured using a force plate during concentric and isometric efforts. Significant (p < 0.05) training-induced increases in tendon K were seen for the plyometric (29.4%; 49.0 +/- 10.8 to 63.4 +/- 9.2 N x mm(-1)) and isometric groups (61.6%; 43.9 +/- 2.5 to 71.0 +/- 7.4 N x mm(-1)). Statistically similar increases in rate of force development and jump height were also seen for both training groups, with increases of 18.9 and 58.6% for the plyometric group and 16.7 and 64.3% for the isometric group, respectively. Jump height was found to be significantly correlated with tendon stiffness, such that stiffness could explain 21% of the variance in jump height. Plyometric training has been shown to place large stresses on the body, which can lead to a potential for injury, whereas explosive isometric training has been shown here to provide similar benefits to that of plyometric training with respect to the measured variables, but with reduced impact forces, and would therefore provide a useful adjunct for athletic training programs within a 6-week time frame.  相似文献   

9.
The purpose of this study was to investigate the motor unit activation of the quadriceps (Q), hamstring (H), and gastrocnemius (G) muscle groups during a variety of plyometric exercises to further understand the nature of these exercises. Twenty-three athletes volunteered to perform randomly ordered plyometric exercises, thought to cover a continuum of intensity levels, including two-foot ankle hops; 15-cm cone hops; tuck, pike, and box jumps; one- and two-leg vertical jump and reach; squat jumps with approximately 30% of their 1RM squat load; and 30- and 61-cm depth jumps. Integrated electromyographic data were analyzed for each exercise using a one-way repeated-measures ANOVA. Results revealed significant main effects for the Q when all subjects are analyzed, as well as for separate analysis of men, women, subjects with vertical jumps greater than 50 cm, and those with vertical jumps less than or equal to 50 cm (p < or = 0.05). Significant main effects were also found for the G muscle group in the analysis of all subjects, as well as for men and subjects with vertical jumps greater than 50 cm (p < or = 0.05). No significant main effects were found for the H muscle group. Pairwise comparisons revealed a variety of differences among plyometric exercises. In some cases, plyometrics previously reported to be of high intensity, such as the depth jump, yielded relatively little motor unit recruitment compared with exercises typically thought to be of low intensity. Results can assist the practitioner in creating plyometric programs based on the nature of the motor unit recruitment.  相似文献   

10.
Objectives:The study aimed to determine the effect of adding a school-based plyometric training program (PMT) to physical education (PE) sessions on the strength, balance, and flexibility in primary school girls.Methods:Students from grades 3-6 were randomized equally to a plyometric or control group. In the control group, students took their regular PE classes twice a week. In the plyometric group, students performed PMT twice a week during the initial 20 minutes of every PE session. The Lido Linea closed kinetic chain isokinetic dynamometer, Star excursion balance test (SEBT), and sit-and-reach test were used to assess muscle strength, balance, and flexibility, respectively, before and after nine weeks of training.Results:The improvement in extension peak force (p=0.04) and extension total work (p<0.001) was more prevalent in the PMT group than in the control group. SEBT scores had improved significantly (p<0.05) for all directions in the PMT group, except in the anterior direction, which was highly significant (p<0.001). Hamstring and lower back flexibility had improved more in the PMT group than in the control group (p<0.001).Conclusion:Adding PMT to regular PE classes has a positive and notable effect on muscle strength, balance, and flexibility in primary school students.  相似文献   

11.
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training.  相似文献   

12.
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.  相似文献   

13.
The purpose of this study was to compare changes in performance indicators (power, torque, and velocity) and muscle soreness between plyometric training on land and in water. Thirty-two college age women were randomly assigned to 8 weeks of an identical plyometric training program on land or in an aquatic setting. Performance indicators were assessed pretraining, midtraining, and posttraining. Muscle soreness (ordinal scale) and pain sensitivity (palpation) were assessed after a training bout (0, 48, and 96 hours) during the first week of training and when training intensity was increased (weeks 3 and 6). Performance indictors increased for both groups (pretraining < midtraining < posttraining, p < or = 0.001). Muscle soreness was significantly greater in the land compared to the aquatic plyometric training group at baseline and each time training intensity was increased, p = 0.01. Aquatic plyometrics provided the same performance enhancement benefits as land plyometrics with significantly less muscle soreness.  相似文献   

14.
No studies have examined the effects of an unstable surface on push-up and push-up plus exercises in terms of the two parts of the serratus anterior muscle. We hypothesized that the lower part of the serratus anterior would have greater activity with an unstable surface, which requires stabilizing the scapular position. The present study was performed to investigate the intramuscular differences between parts of the serratus anterior muscle during push-up and push-up plus exercises. Twelve healthy subjects were included in the study. The upper and lower parts of the serratus anterior and upper and lower parts of the trapezius were investigated by surface EMG during four types of exercise. Repeated one-way ANOVA was used for statistical analyses. Maintaining the push-up plus phase caused significant increases in EMG activity of the upper serratus anterior compared with the push-up ascending phase on both of stable and unstable bases (P < 0.05). The lower serratus anterior showed increased activation on an unstable surface, which required more joint stability than did the stable base. Upper trapezius/upper serratus anterior ratio was significantly lower in the PUP than in the PUA phase with both stable and unstable bases of support (P < 0.05).Further studies are required to investigate the intramuscular variation in activation of the serratus anterior during exercises for rehabilitation.  相似文献   

15.
Thirty-two master athletes (shot put, discus, and hammer throw) were divided into 4 groups according to their age (T40 [40 years of age], 50 [50 years of age], 60 [60 years of age], and 75 [75 years of age]). Twenty-eight age-matched men served as controls (C40 [40 years of age], 50 [50 years of age], 60 [60 years of age], and 75 [75 years of age]). The subjects were tested for maximal isometric strength of the lower and upper extremities. Power was measured by performing jump squats and bench press in the Smith machine with the load of 60% of 1 repetition maximum. Electromyographic (EMG) activity was recorded from 6 different muscles. The muscle thickness of vastus lateralis and intermedius (VL+VI) and triceps brachii (TB) was measured by ultrasound. Maximal strength differed (p < 0.05- 0.001) in all testing actions between T40 and T60 and T40 and T75 as well as between T and C groups. Both VL+VI and TB thickness in T40 was greater (p < 0.05-0.01) than in T60 and T75 and in T was larger than in C groups. Average force during the first 500 milliseconds (ms) was higher (p < 0.05-0.001) in T40 compared to T50, T60, and T75 in bilateral leg extension, biceps curl, and especially in unilateral knee flexion. T40 produced higher power than the other groups (p < 0.05-0.001). The relative agonist EMG activation (VL) in leg extension during the first 100 ms compared to maximum activation was lower (p < 0.05) in T50, T60, and T75, but not in T40. The present data indicate that maximal strength and muscle thickness as well as explosive strength and power characteristics decline with aging also in master athletes who carry out strength training and throwing exercises actively over several decades. Nevertheless, in master athletes, maximal strength and muscle mass as well as explosive force production of the upper and lower extremities seem to be at remarkably higher levels than those recorded for age-matched control men.  相似文献   

16.
The objective of this study was to compare the production of force and paraspinal muscle activity between deadlifts carried out in a standard way and with different instability devices (Bosu and T-Bow). Deadlifts involve the performance of muscle activities with dynamic and isometric characteristics. Thirty-one subjects participated voluntarily in the study. Initially, they performed an isometric test for 5 seconds in each condition. After that, they performed a set of 5 repetitions with 70% of the maximum isometric force obtained in each one of the previously evaluated conditions. During the isometric tests, records of electromyographic activity and force production were obtained, whereas during the dynamic tests, only the electromyographic activity was registered. The subjects produced more force and muscle activity on the stable surface than under the other conditions during the isometric test (p < 0.05), and the same differences in muscle activity were observed during the dynamic test (p < 0.05). These data show that the performance of deadlifts under stable conditions favors a higher production of maximum strength and muscle activity. Therefore, we conclude that the use of instability devices in deadlift training does not increase performance, nor does it provide greater activation of the paraspinal muscles, leading us to question their value in the performance of other types of exercises.  相似文献   

17.
The aim of this study was to examine the influence of restricted knee motion during the serve in tennis players of different performance levels. Thirty subjects distributed in 3 groups (beginner, B; intermediate, I; elite, E) performed 15 flat first serves with normal (normal serve, S(N)) and restricted (restricted serve, S(R)) knee motion. In S(R), the legs were kept outstretched by splints with a knee joint angle fixed at 10 degrees (0 degrees fully extended) to prevent any knee flexion/ extension. Vertical maximum ground reaction forces (Fz(max)), ball impact location (L(impact)), and ball speed (S(ball)) were measured with force platform, video analysis, and radar, respectively. Fz(max), L(impact,) and S(ball) were higher (p < 0.001) in S(N) than in S(R). S(ball) was significantly (p < 0.001) dependent on performance level, with higher values recorded in E than in B or I. From S(R) to S(N), increase in L(impact) was greater (p < 0.01) in E than in other groups and increases in Fz(max) and S(ball) were correlated (r = 0.69, p < 0.01) in E only. Knee motion is a significant contributor to serving effectiveness whatever the performance level. Skilled players perform faster serves than their less skilled counterparts, and this is partly related to a more forceful lower limb drive.  相似文献   

18.
The hypothesis that control of lumbar spinal muscle synergies is biomechanically optimized was studied by comparing EMG data with an analytical model with a multi-component cost function that could include (1) trunk displacements, (2) intervertebral displacements, (3) intervertebral forces; (4) sum of cubed muscle stresses, and (5) eigenvalues for the first two spinal buckling modes. The model's independent variables were 180 muscle forces. The 36 displacements of 6 vertebrae were calculated from muscle forces and the spinal stiffness. Calculated muscle activation was compared with EMG data from 14 healthy human subjects who performed isometric voluntary ramped maximum efforts at angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees and 180 degrees to the right from the anterior direction. Muscle activation at each angle was quantified as the linear regression slope of the RMS EMG versus external force relationship, normalized by the maximum observed EMG.There was good agreement between the analytical model and EMG data for the dorsal muscles when the model included either minimization of intervertebral displacements or minimization of intervertebral forces in its cost function, but the model did not predict a realistic level of abdominal muscles activation. Agreement with EMG data was improved with the sum of the cubed muscle stresses added to the cost function. Addition of a cost function component to maximize the trunk stability produced higher levels of antagonistic muscle activation at low efforts than at greater efforts. It was concluded that the muscle activation strategy efficiently limits intervertebral forces and displacements, and that costs of higher muscle stresses are taken into account, but stability does not appear to be maximized. Trunk muscles are apparently not controlled solely to optimize any one of the biomechanical costs considered here.  相似文献   

19.
Previous research has advocated that plyometric training improves endurance performance. However, a consequence of such a training is the immediate and prolonged appearance of exercise-induced muscle damage (EIMD). This study examined whether a single bout of plyometric exercise, designed to elicit muscle damage, affected cycling endurance performance. Seventeen participants were randomly assigned to either a muscle damage (n = 7 men, 1 woman) or nonmuscle damage (n = 8 men, 1 woman) group. Before and at 48 hours, participants were measured for perceived muscle soreness, peak isokinetic strength, and physiological, metabolic, and perceptual responses during 5-minute submaximal cycling at ventilatory threshold (VT) and a 15-minute time trial. Perceived muscle soreness and isokinetic strength (p < 0.05) were significantly altered in the muscle damage group after EIMD. No changes in heart rate or blood lactate were evident during submaximal exercise (p > 0.05). However, VO2, V(E), and rating of perceived exertion (RPE) values were increased at VT in the muscle damage group at 48 hours after EIMD (p < 0.05). During the time trial, mean power output, distance covered, and VO2 were lower in the muscle damage group at 48 hours after EIMD (p < 0.05). However, there was no change in RPE (p > 0.05), suggesting effort perception was unchanged during time-trial performance after EIMD. In conclusion, individuals using concurrent plyometric and endurance training programs to improve endurance performance should be aware of the acute impact of muscle-damaging exercise on subsequent cycling performance.  相似文献   

20.
Neural, mechanical and muscle factors influence muscle force production. This study was, therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P<0.01-0.001) with higher rates for force production (P<0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号