首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and expression of a yeast protein tyrosine phosphatase.   总被引:6,自引:0,他引:6  
To study the regulation of tyrosine phosphorylation/dephosphorylation in Saccharomyces cerevisiae, a protein tyrosine phosphatase (PTPase) was cloned by the polymerase chain reaction (PCR). Conserved amino acid sequences within the mammalian PTPases were used to design primers which generated a yeast PCR fragment. The sequence of the PCR fragment encoded a protein with homology to the mammalian PTPases. The PCR fragment was used to identify the yeast PTP1 gene which has an open reading frame encoding a 335-amino acid residue protein. This yeast PTPase shows 26% sequence identity to the rat PTPase, although highly conserved residues within the mammalian enzymes are invariant in the yeast protein. The yeast PTP1 is physicallt linked to the 5'-end of a heat shock gene SSB1. This yeast PTP1 gene was expressed in Escherichia coli and obtained in a highly purified form by a single affinity chromatography step. The recombinant yeast PTPase hydrolyzed phosphotyrosine containing substrates approximately 1000 times faster than a phosphoserine containing substrate. Gene disruption of yeast PTP1 has no visible effect on vegetative growth.  相似文献   

2.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

3.
Protein tyrosine phosphatases (PTPases) and protein tyrosine kinase (PTKases) regulate the phosphorylation and dephosphorylation of tyrosine residues in proteins, events that are essential for a variety of cellular functions. PTPases such as PTP1B and the Yersinia PTPase play an important role in diseases including type II diabetes and bubonic plague. A library of 67 bidentate PTPase inhibitors that are based on the alpha-ketocarboxylic acid motif has been synthesized using parallel solution-phase methods. Two aryl alpha-ketocarboxylic acids were tethered to a variety of different diamine linkers through amide bonds. The compounds were assayed in crude form against the Yersinia PTPase, PTP1B, and TCPTP. Six compounds were selected for further evaluation, in purified form, against the Yersinia PTPase, PTP1B, TCPTP, LAR, and CD45. These compounds had IC50 values in the low micromolar range against the Yersinia PTPase, PTP1B, and TCPTP, showed good selectivity for PTP1B over LAR, and modest selectivity over CD45. The correlation between linker structure and inhibitor activity shows that aromatic groups in the linker can play an important role in determining binding affinity in this class of inhibitors.  相似文献   

4.
To date, although at least 75 different PTPases (protein-tyrosine-phosphate-phosphohydrolase, EC 3.1.3.48) have been identified, those detected in platelets are rather scarce. Based on previous results from our laboratory, we investigated the existence of new PTPases in platelets. Triton X-114 phase partitioning of Triton X-100-solubilized human and sheep platelet membranes allowed PTPase to be recovered in the detergent-rich (40-35%, respectively) and -poor phases (60-65%, respectively). Sedimentation analyses of both phases from the sheep species revealed hydrophilic 6S and 3.7S, and amphiphilic 7.5S and 10.3S PTPase forms. Sedimentation analyses of human platelet membrane-associated or cytosolic PTPase revealed hydrophilic 6.7S and 4.3S, and amphiphilic 5.5S and 10.8S forms, or hydrophilic 4S, 5.9S and 6.9S forms, respectively. Western blot analysis using monoclonal antibodies (MoAb) against human PTP1B, PTP1C, PTP1D and RPTPalpha (mouse anti-human PTPase MoAbs) showed that RPTPalpha was not present in platelets and that the PTP1C type and PTP1D type (but probably not the PTP1B type) were expressed in sheep species. Immunoblots also revealed that all PTPases detected were mainly membrane-associated, with similar percentages of cellular distribution in both species. All PTPases were mainly recovered in the detergent-poor phases from the Triton X-114 phase partitioning, although PTP1D from human species was also significantly present (30%) in the detergent-rich phase. Additionally, all PTPases sedimented within the same PTPase peak in sucrose gradients (sedimentation coefficients around 4S). These findings indicate that amphiphilic and hydrophilic PTPases different from PTP1B, PTP1C, PTP1D or RPTPalpha, with higher sedimentation coefficients and with higher activity when O-phosphotyrosine or a synthetic peptide phosphorylated on tyrosine were used as substrates, are present in platelets.  相似文献   

5.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

6.
Protein tyrosine phosphorylation is an important regulatory mechanisms in cell physiology. While the protein tyrosine kinase (PTKase) family has been extensively studied, only six protein tyrosine phosphatases (PTPases) have been described. By Southern blot analysis, genomic DNA from several different phyla were found to cross-hybridize with a cDNA probe encoding the human leukocyte-common antigen (LCA; CD45) PTPase domains. To pursue this observation further, total mRNA from the protochordate Styela plicata was used as a tempalte to copy and amplify, using polymerase chain reaction (PCR) technology, PTPase domains. Twenty-seven distinct sequences were identified that contain hallmark residues of PTPases; two of these are similar to described mammalian PTPases. Southern blot analysis indicates that at least one other Styela sequence is highly conserved in a variety of phyla. Seven of the Styela domains have significant similarity to each other, indicating a subfamily of PTPases. However, most of the sequences are disparate. A comparison of the 27 Styela sequences with the ten known PTPase domain sequences reveals that only three residues are absolutely conserved and identifies regions that are highly divergent. The data indicate that the PTPase family will be equally as large and diverse as the PTKases. The extent and diversity of the PTPase family suggests that these enzymes are, in their own right, important regulators of cell behavior.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M37986-M38041.  相似文献   

7.
The cytoplasmic domains of two human transmembrane protein tyrosine phosphatases (PTPases), LAR and CD45, have been expressed in Escherichia coli, purified to near-homogeneity, and compared for catalytic efficiency toward several phosphotyrosine-containing peptide substrates. A 615-residue LAR fragment (LAR-D1D2) containing both tandemly repeated PTPase domains shows almost identical specific activity and high catalytic efficiency as the 40-kDa single-domain LAR-D1 fragment, consistent with a single functional active site in the 70-kDa LAR-D1D2 enzyme. A 90-kDa fragment of the human leukocyte CD45 PTPase, containing two similar tandemly repeated PTPase domains, shows parallel specificity to LAR-D1 and LAR-D1D2 with a high kcat/Km value for a phosphotyrosyl undecapeptide. Sufficient purified LAR-D1 and LAR-D1D2 PTPases were available to demonstrate enzymatic exchange of 18O from 18O4 inorganic phosphate into H2(16)O at rates of approximately 1 x 10(-2) s-1. The oxygen-18 exchange probably proceeds via a phosphoenzyme intermediate. Brief incubation of all three PTPase fragments with a [32P]phosphotyrosyl peptide substrate prior to quench with SDS sample buffer and gel electrophoresis led to autoradiographic detection of 32P-labeled enzymes. Pulse/chase studies on the LAR 32P-enzyme showed turnover of the labeled phosphoryl group.  相似文献   

8.
Commonly used dyes including Evans Blue and Trypan Blue were examined for their inhibitory activities against protein tyrosine phosphatases (PTPases), all of them showed inhibition of PTPases with different potencies. Of the 13 dyes tested, four exhibited IC(50) value of less than 10 microM, Evans Blue lowest IC(50) of 1.3 microM against PTP1B. Care must be taken in the use of dyes for clinical or biochemical experiments to avoid unwanted side effects. Some of the low molecular weight dyes might be useful as lead compounds for the development of potent and selective PTPase inhibitors.  相似文献   

9.
Using in vitro protein tyrosine phosphatase (PTPase) assays, we found that sodium stibogluconate, a drug used in treatment of leishmaniasis, is a potent inhibitor of PTPases Src homology PTPase1 (SHP-1), SHP-2, and PTP1B but not the dual-specificity phosphatase mitogen-activated protein kinase phosphatase 1. Sodium stibogluconate inhibited 99% of SHP-1 activity at 10 micrograms/ml, a therapeutic concentration of the drug for leishmaniasis. Similar degrees of inhibition of SHP-2 and PTP1B required 100 micrograms/ml sodium stibogluconate, demonstrating differential sensitivities of PTPases to the inhibitor. The drug appeared to target the SHP-1 domain because it showed similar in vitro inhibition of SHP-1 and a mutant protein containing the SHP-1 PTPase domain alone. Moreover, it forms a stable complex with the PTPase: in vitro inhibition of SHP-1 by the drug was not removed by a washing process effective in relieving the inhibition of SHP-1 by the reversible inhibitor suramin. The inhibition of cellular PTPases by the drug was suggested by its rapid induction of tyrosine phosphorylation of cellular proteins in Baf3 cells and its augmentation of IL-3-induced Janus family kinase 2/Stat5 tyrosine phosphorylation and proliferation of Baf3 cells. The augmentation of the opposite effects of GM-CSF and IFN-alpha on TF-1 cell growth by the drug indicated its broad activities in the signaling of various cytokines. These data represent the first evidence that sodium stibogluconate inhibits PTPases and augments cytokine responses. Our results provide novel insights into the pharmacological effects of the drug and suggest potential new therapeutic applications.  相似文献   

10.
Human HPTP beta, leukocyte common antigen (LCA), and leukocyte common antigen-related molecule (LAR) are transmembrane receptor-like proteins whose cytoplasmic regions contain either one (HPTP beta) or two (LCA and LAR) domains that are homologous to protein tyrosine phosphatases (PTPases). Whereas the membrane-proximal domain 1 has enzymatic activity, the membrane-distal domain 2 of both LCA and LAR has no detectable catalytic activity. The cytoplasmic regions of HPTP beta, LCA, and LAR were expressed in Escherichia coli and purified to greater than 90% purity. Modulatory effects of various low molecular weight compounds and homo- and copolymers of amino acids were examined. Several polypeptides that contain a high proportion of tyrosine were strongly inhibitory to these PTPases. To determine a possible role for the LAR domain 2, the properties of recombinant LAR PTPases containing both domains 1 and 2 (LAR-D1D2) or only domain 1 (LAR-D1) were compared. In nearly all aspects examined, LAR-D1 and LAR-D1D2 were indistinguishable. However, polycationic polypeptides strongly stimulated the PTPase activity of LAR-D1D2, but not LAR-D1, using the peptide substrate Raytide. Thus, basic polypeptides seem to indirectly alter the catalytic activity of domain 1 by interacting with domain 2. This result suggests that domain 2 has a regulatory function.  相似文献   

11.
Porcine low Mr phosphotyrosine protein phosphatase has been purified and the complete amino acid sequence has been determined. Both enzymic and chemical cleavages are used to obtain protein fragments. FAB mass spectrometry and enzymic subdigestion followed by Edman degradation have been used to determine the structure of the NH2-terminal acylated tryptic peptide. The enzyme consists of 157 amino acid residues, is acetylated at the NH2-terminus, and has arginine as COOH-terminal residue. It shows kinetic parameters very similar to other known low Mr PTPases. This PTPase is strongly inhibited by pyridoxal 5-phosphate (K=21M) like the low Mr PTPases from bovine liver, rat liver (AcP2 isoenzyme), and human erythrocyte (Bslow isoenzyme). The comparison of the 40–73 sequence with the corresponding sequence of other low Mr PTPases from different sources demonstrates that this isoform is highly homologous to the isoforms mentioned above, and shows a lower homology degree with respect to rat AcP1 and human Bfast isoforms. A classification of low Mr PTPase isoforms based on the type-specific sequence and on the sensitivity to pyridoxal 5-phosphate inhibition has been proposed.Abbreviations used PTPase phosphotyrosine protein phosphatase - TFA trifluoroacetic acid - SDS sodium dodecylsulfate - T tryptic peptides - SP endoproteinase Glu-C peptides - FAB fast atom bombardment - Ac acetyl - HPLC high-performance liquid chromatography - OPA o-phtaldialdehyde - PMSF phenylmethylsulfonyl fluoride - CD45 leukocyte common-antigen PTPase - LAR leukocyte-antigen-related PTPase - PTP IB human placental PTPase  相似文献   

12.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe.  相似文献   

13.
Tyrosine phosphorylation of the insulin receptor is the initial event following receptor binding to insulin, and it induces further tyrosine phosphorylation of various intracellular molecules. This signaling is countered by protein tyrosine phosphatases (PTPases), which reportedly are associated with insulin resistance that can be reduced by regulation of PTPases. Protein tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related PTPase (LAR) are the PTPases implicated most frequently in insulin resistance and diabetes mellitus. Here, we show that PTP1B and LAR are expressed in human fibroblasts, and we examine the regulation of PTPase activity in fibroblasts from patients with an insulin receptor gene mutation as an in vitro model of insulin resistance. Total PTPase activity was significantly lower in the cytosolic and membrane fractions of fibroblasts with mutations compared with controls (p<0.05). Insulin stimulation of fibroblasts with mutations resulted in a significantly smaller increase in PTP1B activity compared with stimulation of wild-type fibroblasts (p<0.05). This indicates that insulin receptor gene mutations blunt increases in PTPase activity in response to insulin, possibly via a negative feedback mechanism. Our data suggest that the PTPase activity in patients with insulin receptor gene mutation and severe insulin resistance may differ from that in ordinary type 2 diabetes.  相似文献   

14.
Porcine low Mr phosphotyrosine protein phosphatase has been purified and the complete amino acid sequence has been determined. Both enzymic and chemical cleavages are used to obtain protein fragments. FAB mass spectrometry and enzymic subdigestion followed by Edman degradation have been used to determine the structure of the NH2-terminal acylated tryptic peptide. The enzyme consists of 157 amino acid residues, is acetylated at the NH2-terminus, and has arginine as COOH-terminal residue. It shows kinetic parameters very similar to other known low Mr PTPases. This PTPase is strongly inhibited by pyridoxal 5′-phosphate (K=21ΜM) like the low Mr PTPases from bovine liver, rat liver (AcP2 isoenzyme), and human erythrocyte (Bslow isoenzyme). The comparison of the 40–73 sequence with the corresponding sequence of other low Mr PTPases from different sources demonstrates that this isoform is highly homologous to the isoforms mentioned above, and shows a lower homology degree with respect to rat AcP1 and human Bfast isoforms. A classification of low Mr PTPase isoforms based on the type-specific sequence and on the sensitivity to pyridoxal 5?-phosphate inhibition has been proposed.  相似文献   

15.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

16.
M Streuli  N X Krueger  T Thai  M Tang    H Saito 《The EMBO journal》1990,9(8):2399-2407
Protein tyrosine phosphorylation is regulated by both protein tyrosine kinases and protein tyrosine phosphatases (PTPases). Recently, the structures of a family of PTPases have been described. In order to study the structure-function relationships of receptor-linked PTPases, we analyzed the effects of deletion and point mutations within the cytoplasmic region of the receptor-linked PTPases, LCA and LAR. We show that the first of the two domains has enzyme activity by itself, and that one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity. The second PTPase like domains do not have detectable catalytic activity using a variety of substrates, but sequences within the second domains influence substrate specificity. The functional significance of a stretch of 10 highly conserved amino acid residues surrounding the critical cysteine residue located in the first domain of LAR was assessed. At most positions, any substitution severely reduced enzyme activity, while missense mutations at the other positions tested could be tolerated to varying degrees depending on the amino acid substitution. It is suggested that this stretch of amino acids may be part of the catalytic center of PTPases.  相似文献   

17.
Protein tyrosine phosphatases (PTPases) regulate intracellular signal transduction pathways by controlling the level of tyrosine phosphorylation in cells. These enzymes play an important role in a variety of diseases including type II diabetes and infection by the bacterium Yersinia pestis, which is the causative agent of bubonic plague. This report describes the synthesis, using parallel solution-phase methods, of a library of 104 potential inhibitors of PTPases. The library members are based on the bis(aryl alpha-ketocarboxylic acid) motif that incorporates a carboxylic acid on the central benzene linker. This carboxylic acid was coupled with a variety of different aromatic amines through an amide linkage. The aromatic component of the resulting amides is designed to make contacts with residues that surround the active site of the PTPase. The library was screened against the Yersinia PTPase and PTP1B. Based upon the screening results, four members of the library were selected for further study. These four compounds were evaluated against the Yersinia PTPase, PTP1B, TCPTP, CD45, and LAR. Compound 14 has an IC(50) value of 590nM against PTP1B and is a reversible competitive inhibitor. This affinity represents a greater than 120-fold increase in potency over compound 2, the parent structure upon which the library was based. A second inhibitor, compound 12, has an IC(50) value of 240nM against the Yersinia PTPase. In general, the selectivity of the inhibitors for PTP1B was good compared to LAR, but modest when compared to TCPTP and CD45.  相似文献   

18.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

19.
Seven protein tyrosine phosphatase (PTPase) genes have been identified in the fruit-fly Drosophila melanogaster. Four of these genes encode receptor-linked PTPases (R-PTPs) that are expressed on central nervous system axons in the embryo. Each axonal R-PTP has an extracellular domain that is homologous to vertebrate adhesion molecules and to identified mammalian R-PTPs. Two non-receptor PTPase genes have been isolated to date. One of these, corkscrew (csw), encodes an SH2 domain-containing PTPase that appears to be a homolog of mammalian PTP1D. Genetic evidence indicates that the csw PTPase is involved in the transduction of signals from receptor tyrosine kinases to their down-stream targets, which include Ras proteins.  相似文献   

20.
Xie L  Zhang YL  Zhang ZY 《Biochemistry》2002,41(12):4032-4039
Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号