共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlated patterns of variation in phenology and seed production in populations of two annual grasses along an aridity gradient 总被引:1,自引:0,他引:1
Sergei Volis 《Evolutionary ecology》2007,21(3):381-393
I applied a comparative approach to reveal correlated patterns of variation in phenology and seed production in four populations
of two annual grasses Hordeum spontaneum and Avena sterilis, sampled in the same environments distributed along an aridity gradient in Israel. The steep aridity gradient in Israel represents
two parallel clines of environmental productivity (annual rainfall) and predictability (variation in amount and timing of
annual rainfall) that is likely to induce similar responses in natural plant populations distributed along the gradient, if
(1) selection is strong, (2) species share the same ecological niche, and (3) there is genetic variation for ecologically
important traits. I found in plants of both species (1) ultimate advance in onset of flowering, and (2) more but smaller seeds,
with increasing aridity. The broad sense heritabilities of onset of flowering, seed size and seed yield in both species were
very high, moderate and low, respectively. It appears that the observed adaptive complex of traits have evolved in both species
in response to this specific array of environments. 相似文献
2.
Miranda B. Dunbar R. Mark Brigham 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2010,180(6):885-893
Most studies of hibernation physiology sample individuals from populations within a single geographic area, yet some species
have large ranges meaning populations likely experience area-specific levels of energetic challenges. As well, few studies
have assessed within-season variation. Since physiological adjustments often are influenced by environmental factors, and
the types of environments vary with geography, we expected variance in hibernation patterns among geographically separated
populations. Our specific goal was to measure intraspecific variation in torpid metabolic rate (TMR) and body temperature
(T
b) as a function of ambient temperature (T
a) for a non-migratory and migratory species to determine whether there is a continuum in physiological responses based on
latitude. We chose big brown (Eptesicus fuscus) and eastern red bats (Lasiurus borealis) as model species and sampled individuals from populations throughout each species’ winter range. In both species, individuals
from southern populations maintained higher TMR at cooler T
as and lower TMR at warmer T
as than those from northern populations. Big brown bats from southern populations regulated T
b during torpor at higher levels and there was no significant difference in T
b between populations of eastern red bats. Although metabolic responses were similar across the gradient between species, the
effect was more dramatic in big brown bats. Our data demonstrate a continuum in thermoregulatory response, ranging from classic
hibernation in northern populations to a pattern more akin to daily torpor in southern populations. Our research highlights
the potential usefulness of bats as model organisms to address questions about within-species physiological variation in wild
populations. 相似文献
3.
Effects on seed germination of temperatures ranging from −2 C to +29 C were tested inDioscorea nipponica, D. tokoro, D. japonica, D. tenuipes, D. septemloba andD. quinqueloba which orginate in the temperate zone; they are distributed from northern cold areas to southern warm areas approximately
in this order in Japan. After water imbibition of these seeds, chilling induced full germination, and high temperatures over
23 C induced a secondary dormancy, but sensitivities to the chilling and to the high temperatures differed with species. Cold-climate
species germinated rapidly at higher temperatures after a short-term chilling or even without chilling, whereas warm-climate
species required chilling of a rather long period for germination; thus, among 6 species tested, favourable temperatures for
germination and climatic temperatures of distribution area were conversely correlated.
Seeds ofD. tokoro andD. japonica collected from several populations grown in different climates were also tested for germination at 11 to 29 C; seeds from
warm climates germinated rather slowly compared to seeds from cold climates.
These inte- and intra-specific adaptation manners in the temperature members of the genusDioscorea are entirely different from those of many other plant genera reported by some workers. 相似文献
4.
In this study, we conducted experiments to accumulate practical information on the propagation and establishment of a population of Cardiocrinum cordatum var. glehnii by seed sowing. C. cordatum var. glehnii seeds require approximately 19 months from seed dispersal to cotyledon emergence in the field. However, the period from seed dispersal to radicle emergence was shortened to approximately 7–8 months by the temperature transition of 25/15°C (60 days) → 15/5°C (30 days) → 0°C (120 days) → 15/5°C (i.e., 15/5°C represents alternating temperature treatment wherein the seeds were placed at 15°C for 12 h during the day and then at 5°C for 12 h during the night). More than 90% of the seeds, which were stored dry at 5°C for 12 months and sown in pots in the field, showed cotyledon emergence, whereas in seeds stored dry at 25°C, dry at room temperature, and non-dry at room temperature, cotyledon emergence was decreased by less than 1%. More than 88% of the seeds that were stored dry at 5°C and sown in the field in October 2002 immediately after collecting, November, and from April to July 2003 showed cotyledon emergence in spring 2004. However, seeds sown in August, September, and October 2003 showed cotyledon emergences of 57.6%, 0%, and 0% in spring 2004, respectively. Seeds collected in October 2002 and sown until July 2003 in the field received adequate high temperature in summer, moderate temperature in autumn, and cold temperature in winter; therefore, the percentage of cotyledon emergence was high in spring 2004. On the other hand, seeds sown in August 2003 or later could not receive enough high temperature; thus, cotyledons emerged from only a few seeds. 相似文献
5.
Comparisons of germination traits of alpine plants between fellfield and snowbed habitats 总被引:6,自引:0,他引:6
We examined the seed-germination responses of 27 alpine species with reference to habitat type (fellfield and snowbed), temperature (five regimes), and light requirement. About 70% of species showed >40% germination at warm temperatures without cold stratification. However, a moist-chilling treatment markedly improved the germination percentages in most species, especially under cool conditions. Thus, cold stratification effectively reduced the temperature requirement for germination. Patterns of germination response within species were not consistent between the fellfield and snowbed habitats for species inhabiting both habitats. For interspecific comparisons, there were no significant differences in germination responses to the temperature regimes and the cold stratification between the fellfield and snowbed species. Also, germination speed and the length of germinating period did not differ between fellfield and snowbed species. Most species (86%) showed a requirement for light for germination without cold stratification. Although the extent of the light requirement was reduced after cold stratification in some species, the light requirement of most small-seeded species remained. The combination of cold stratification and the light requirement is a major factor determining the seedling emergence and formation of seed banks in alpine plants. However, habitat-specific patterns of germination traits were less clear, suggesting similar germination traits in fellfield and snowbed plants, at least under controlled conditions in the laboratory. 相似文献
6.
A geographically extended model of the dynamics of tree size structure of forests is proposed to simulate the change of forest zonation along latitude in response to global environmental change. To predict the response of forests to global change, it is necessary to construct functional models of forest tree populations. The size-structure-based model requires far less memory and steps of calculation compared with individual-based models, and it is easy to incorporate the dimension of geographic locations into the model to describe large-scale dynamics of forest-type distributions. The effect of increasing size growth rate, expected from increasing atmospheric carbon dioxide, was diminished at the stand-level basal area density, because of regulation by one-sided competition. Model simulations of a century-long global warming at around 3 °C predicted that (1) biomass changed in resident forests rather simultaneously in response to warming, and that (2) there was a considerable time lag in movement at the boundaries of different forest types, particularly under the existence of resident forest types that would be finally replaced. It required several thousand years after a century-long warming spell for forest types to attain new steady-state distributions after shifting. As a consequence, global warming created a zigzag pattern of biomass distribution along a latitudinal gradient, i.e., an increase in the cooler-side boundary of forest types and a decrease in the warmer-side boundary. 相似文献
7.
Genetic variation and structure of ten wild, three domesticated and one wild-cultivated populations of pepper (Capsicum annuum) from northwestern Mexico were studied in order to find out if the domestication process has reduced the genetic variation of the modern cultivars of this species. The analysis was based on 12 polymorphic loci from nine isozymes. Wild populations were sampled in different habitats along a latitudinal gradient of ca. 500 km. All populations had high genetic variation (i.e. wild: A = 2.72, P = 90.8%, He = 0.445; wild-cultivated: A = 2.50, P = 92.3%, He = 0.461; domesticated: A = 2.60, P = 84.6%, He = 0.408), indicating little genetic erosion in modern cultivars of pepper. Genetic diversity estimated by Nei's method showed that most genetic variation is found within, rather than among populations. However, genetic differentiation is greater among cultivated (G ST=0.167) than among wild (G ST=0.056) populations. Wild populations had an average genetic identity (I) of 0.952, indicating little differentiation and high gene flow (Nm=4.21) among these populations. Average genetic identity between wild and domesticated populations was of I=0.818, revealing that the domestication process has modified the genetic composition of commercial varieties of pepper. Changes in genetic composition among commercial varieties seem to have occurred in different directions, as indicated by the average value of I = 0.817 among these populations. The high level of diversity found in wild populations of C. annuum suggests that the wild relatives of cultivated peppers are a valuable genetic resource which must be conserved. Received May 5, 1999 Accepted October 30, 2000 相似文献
8.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR
far-red light
- P
phytochrome
- Pr
red-absorbing form of P
- Pfr
far-red-absorbing form of P
- R
red light 相似文献
9.
Population densities of microtine rodents were studied along an air pollution gradient in the Kola Peninsula, Russia, by long-term and short-term trapping. The study area is affected by high sulphur dioxide and heavy metal emissions from the Severonikel copper-nickel smelter in Monchegorsk. The density of Clethrionomys rufocanus, the most abundant vole species in the area, was lowest close to the smelter and increased with distance up to the farthest, less polluted trapping sites. Clethrionomys glareolus, C. rutilus and Lemmus lemmus were absent from the most severely damaged area and were also scarce at the moderately polluted area 28 km south of the smelter. Although the population of C. glareolus has previously been cyclic at the moderately polluted area, we were unable to demonstrate any regular cycle. The most likely explanation for the low number of microtine rodents in the damaged and moderately polluted areas in a decrease in the quantity of important food plants: epiphytic lichens for C. glareolus and possibly C. rutilus, mosses for L. lemmus and seed plants, especially Vaccinium myrtillus, for C. rufocanus. Close to the smelter, direct toxic effects of heavy metals may also reduce population densities. The results show that pollutants may change the relative proportions of microtine species. 相似文献
10.
Alberto F Bouffier L Louvet JM Lamy JB Delzon S Kremer A 《Journal of evolutionary biology》2011,24(7):1442-1454
We assessed the adaptive potential of seed and leaf phenology in 10 natural populations of sessile oak (Quercus petraea) sampled along two altitudinal transects using common garden experiments. Population differentiation for both phenological traits was observed with high-altitude populations germinating and flushing later than low altitude ones. However, high genetic variation and heritability values were also maintained within populations, despite slightly decreasing for dates of leaf unfolding with increasing altitude. We suggest that biotic and abiotic fluctuating selection pressures within populations and high gene flow are the main mechanisms maintaining high genetic variation for these fitness related traits. Moreover, changes in selection intensity and/or selection pressures along the altitudinal gradient can explain the reduction in genetic variation observed for leaf phenology. We anticipate that the maintenance of high genetic variation will be a valuable resource for future adaptation of sessile oak populations undergoing an upslope shift caused by climate change. 相似文献
11.
The effects of cold stratification, light and seed clustering in petri dish on Ottelia alismoides seed germination were investigated. The seeds required light and an extended cold period in order to germinate, but neither treatment alone was effective. Seed germination significantly increased with length of the 4 °C cold stratification period. Freshly collected seeds failed to germinate while a 5-month period at 4 °C yielded 29 ± 9% germination in the light, but none in the dark. Treatment with sodium nitroprusside, a nitric oxide source, failed to promote germination in the light or dark. Seeds of O. alismoides showed an unusual and significant positive response to aggregation. Germination in the light, after 5-month 4 °C cold stratification, was stimulated to almost five-fold in the dishes that were more densely sown with seed (20 seeds versus 200 seeds). Likewise, clustering seeds in dense aggregations stimulated germination significantly. Germination more than quadrupled with an increase from 1 to 50 seeds per cluster (200 seeds per dish), reaching a value of 72 ± 4%. Linear regression analysis shows the correlation between seed cluster density (no. per cluster) and germination rate (%) was highly significant (R2 = 0.85, P = 0.000). The extended cold stratification requirement is probably an over-wintering device. The mechanism of the density-dependent stimulation is unclear. 相似文献
12.
Carbonnelle S Hance T Migeon A Baret P Cros-Arteil S Navajas M 《Experimental & applied acarology》2007,41(4):225-241
The genetic structure of populations of the two-spotted spider mite Tetranychus urticae was investigated along a south–north European transect spanning from southern France to The Netherlands. Mites were collected
on Urtica dioica in 6 sampling zones. Microsatellite variation at 5 loci revealed considerable genetic variation with an average heterozygozity
of 0.49. Significant heterozygote deficiency was found in 7 populations out of the 18 samples analyzed and one of them was
completely monomorphic. Tetranychus urticae populations show some level of genetic structuring. First, genetic differentiation between localities (F
ST estimates) was significant for all comparisons. Second, the analysis of molecular variance, AMOVA, indicates that there is
an effect, albeit low (9%), of the locality in accounting for allele frequency variance. Geographic distance emerges as a
factor responsible for this genetic structure. The results are discussed in relation to the biological features of the species
and the known patterns of migration. Related agronomical issues are addressed. 相似文献
13.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in
Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for
germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances
in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a
forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the
ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final
germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest
and shade house data combined) ranged from 5–5 days for Pometia
tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either
time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However,
the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was
significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species
germinated in ≤30 days at constant 30°C in light. 相似文献
14.
Background and Aims
Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland.Methods
Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site.Key Results
Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species.Conclusions
Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring. 相似文献15.
Abstract. The dynamics of the seed bank may provide clues to the process of recovery of the vegetation of disturbed sites. The role of the seed bank may be more important in areas with a seasonal climate than in areas where seedling recruitment is not limited to one season. We studied the seed bank and the seed rain in three sites of the Chilean mediterranean-climate region (33° 48'S) which differed in the degree of anthropic disturbance: a closed-canopy, second-growth forest; an open matorral; and an old-field. Additionally, we tested the germination of seeds from the soil and from the current-year seed crop. The seed bank varied considerably between the two years of study, although no change in the vegetation could be observed. Seed density and species richness were lower in 1989 than in 1988. The seed bank of the second-growth forest changed less between years, while the old-field showed the largest change. The highest seed rain occurred under shrub patches in the open matorral, while few seeds fell in the spaces between shrub clumps or in the old-field. In the forest, seed rain was low and correlated with species cover. Germination was low (0 - 15%) in tests using either soil samples or fresh seeds. These results indicate that matorral succession is a very slow process, limited mainly by low germination and low arrival of propagules to open areas. Most woody species have animal-disseminated fleshy propagules. The presence of established shrubs which may serve as perches or refuges for animals increases species richness in the seed rain and the seed bank. 相似文献
16.
Organisms can respond to variation in temperature through the direct effect of temperature on phenotypes (phenotypic plasticity), or through long-term adaptation to temperature (and thus evolution of either mean size or thermal reaction norm). We examined the effects of various temperatures (of 20 and 30 °C) on development time, adult body size (body length and body width) and pre-adult survivorship in six populations of Chrysomya megacephala, collected at different latitudes. We found that temperature changes induced substantial plasticity in terms of development time, body size and pre-adult survivorship, indicating that developmental temperature significantly affects growth and life history traits of C. megacephala. We also detected genetic differences among populations for body size and development time, and these two traits exhibited highly significant variations in the responses of different populations to various temperature conditions, indicating genetic differences among populations in terms of thermal reaction norms. The latitude of origin of the different populations (and hence mean temperature regimes in the environments from where the populations originated) did not appear to fully explain these genetic differences. In short, changes in development time and body size in C. megacephala can be regarded as adaptations to changing thermal regimes. 相似文献
17.
Petros Ganatsas Marianthi Tsakaldimi Costas Thanos 《Biodiversity and Conservation》2008,17(10):2427-2439
Variation in cone size, seed number per cone, seed potential, seed efficiency, seed morphology and seed germination behavior
of Pinus pinea and its relation to stand conditions was analyzed. Data were collected from P. pinea forest in Strofylia, southern Greece, a forest that belongs to the Natura 2000 European network and the RAMSAR convention
and is characterized by the absence of regeneration for many decades. The pine stands found in the area were distinguished
into five categories according to a previous study and our observations, regarding stand age, canopy cover and the degree
of stress by human pressure. The categories are: (I) young artificial, (II) closed-mature, (III) open-mature, (IV) over-mature
stands and (V) highly degraded stands. Cones were collected from all stand types and their morphological characteristics as
well as their seed production were measured. Seeds were extracted from the collected cones, measured and their germination
behavior was tested. The findings showed that the over-mature and the high degraded stands and to a lesser extent, the closed-mature
stands, produced significantly smaller cones with a lower seed potential, a lower number of filled seeds per cone, a greater
number of not fully developed seeds and reduced seed morphological characteristics than the young and open-mature stands.
However, the seed germination behavior of fully developed seeds was only slightly affected by the stand type. 相似文献
18.
The effect of phenols on respiratory enzymes in seed germination 总被引:1,自引:0,他引:1
Low molecular weight phenolic compounds were identified in two soilswith different vegetative cover, Fagus sylvatica, L. andPinus laricio, Poiret, spp. calabrica, and were tested atdifferent concentrations on seed germination of Pinuslaricio, and on respiratory and oxidative pentose phosphate pathwayenzymes involved in the first steps of seed germination. The data obtained showthat there are marked differences in the phenolic acid composition of the twoinvestigated soils. All the phenolic compounds bioassayed inhibited seedgermination and those extracted from Pinus laricio soilwere particularly inhibitory. We also found that the non-germination of seedsisstrongly correlated to the inhibition of the activities of enzymes ofglycolysisand the oxidative pentose phosphate pathway. 相似文献
19.
In 1991–1993, we investigated the incidence of seed dormancy in 25 local populations of barnyard grass, Echinochloa crus-galli (L.) P.Beauv., in the western Czech Republic. The percentage of germination after 4 months afterripening of dry seeds at 25°C varied between 0.0 and 83.6%. Although there were significant annual differences in the percentage of germination at some localities, typical proportions of dormant seeds persisted over 3 years at field sites where the seed bank was not disturbed. One-way ANOVA (using data from 14 cultivated or abandoned fields) revealed that 73.0% of variance in seed dormancy incidence could be attributed to the effect of locality (P<0.001). Incidence of dormancy was not correlated with mother plant stature (dry above-ground biomass, number of tillers, maximal stem height) nor seed mass. There was a significant correlation (r
2=0.403, P<0.005) between dormancy incidence at natural localities in 1991 and in F1 offspring sown at experimental grounds at Praha-Ruzyn in 1992. The results indicate that heredity is important in maintaining local variation in seed dormancy, probably favoured by the self-pollinating reproduction of barnyard grass. 相似文献
20.
We examined the role of the soil seed bank along a grazing disturbance gradient and its relationship with the vegetation of alpine meadows on the Tibet plateau, and discussed the implications for restoration. The seed bank had a high potential for restoration of species-rich vegetation; 62 species were identified in the vegetation and 87 in the seed bank, 39 species being common to both. Mean seed density was 3069–6105 viable seeds m−2. The density of buried seeds increased significantly with increasing disturbance, indicating that restoration of disturbed areas is not seed limited. Seed density and species richness decreased with depth. The proportion of perennial species decreased with decrease in disturbance both in seed bank and in vegetation. A large portion of species with persistent seeds in the disturbed areas indicate that this seed type can be regarded a strategy of adaptation to current disturbances. Detrended correspondence analysis (DCA) showed significant differences of species composition between seed bank and vegetation, except for the seriously disturbed site. Our results suggest that the establishment of new species in severely disturbed areas is more dependent on the seed bank. By contrast, the restoration in less-disturbed and mature meadows does not rely on seed banks, and the establishment of the vegetation in these communities is more likely to rely on seed dispersal from the standing vegetation and on species with vegetative reproduction. 相似文献