首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first anion inhibition study of the mitochondrial human carbonic anhydrase (hCA, EC 4.2.1.1) isoform hCA VB is reported. Fluoride, chloride, bromide, iodide, cyanate, thiocyanate, cyanide, azide, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, sulfate, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid were compared as inhibitors of the two mitochondrial isozymes hCA VA and hCA VB. These enzymes are involved in biosynthetic reactions leading to fatty acid and Krebs cycle intermediates biosynthesis in addition to acting as catalysts for the interconversion of carbon dioxide and bicarbonate. The anion inhibition profiles of the two isoforms are dramatically different. The best hCA VB inhibitors were cyanate, thiocyanate, cyanide and hydrogensulfide (K(I)s of 80-76 microM) whereas the least effective ones were the halides (K(I)s of 11-72 mM), with the best inhibitor being fluoride and the least effective ones bromide and iodide. Whereas hCA VA is not sensitive to bicarbonate inhibition (K(I) of 82 mM) similarly to the cytosolic isoform hCA II, hCA VB is well inhibited by this anion, with a K(I) of 0.71 mM. Overall, hCA VB is more sensitive to anion inhibitors as compared to hCA VA. Such data support prior suggestions that the two mitochondrial isozymes play different physiological functions.  相似文献   

2.
The first inhibition study of the beta-class carbonic anhydrase (CA, EC 4.2.1.1) from the methanoarchaeon Methanobacterium thermoautotrophicum (Cab) with anions is reported here. Inhibition data of the alpha-class human isozymes hCA I and hCA II (cytosolic) as well as the membrane-bound isozyme hCA IV and the gamma-class enzyme from another archaeon, Methanosarcina thermophila (Cam) with a large number of anionic species such as halides, pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrosulfide, bisulfite, sulfate, etc., are also provided for comparison. The best Cab anion inhibitors were thiocyanate and hydrogen sulfide, with inhibition constants in the range of 0.52-0.70 mM, whereas cyanate, iodide, carbonate, and nitrate were weaker inhibitors (Ki's in the range of 7.8-13.2 mM). Fluoride, chloride, and sulfate do not inhibit this enzyme appreciably, whereas the CA substrate bicarbonate, or other anions, such as bromide, nitrite, bisulfite, or sulfamate behave as weak inhibitors (Ki in the range of 40-45 mM). It is interesting to note that the metal poison, coordinating anions cyanide and azide are also rather weak Cab inhibitors (Ki in the range of 27-55 mM), whereas sulfamide is a very weak Cab inhibitor (Ki of 103 mM), although it strongly inhibits Cam (Ki of 70 microM). Surprisingly, phenylboronic and phenylarsonic acids, which have been investigated for the inhibition of all these CAs for the first time, showed very weak activity against the alpha-CA isozymes, but were effective Cab and Cam inhibitors. The best Cab inhibitors were just these two compounds (Ki's of 0.20-0.33 mM), whereas the best Cam inhibitor was sulfamic acid (Ki of 96 nM). These major differences of behavior between the diverse CAs investigated here toward anion inhibitors can be difficultly explained considering the convergent evolution of so diverse enzymes for the binding and turnover of small molecules such as carbon dioxide and anions.  相似文献   

3.
The inhibition of the newly discovered cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozyme XIII of murine origin (mCA XIII) has been investigated with a series of anions, such as the physiological ones (bicarbonate, chloride), or the metal complexing anions (cyanate, cyanide, azide, hydrogen sulfide, etc), nitrate, nitrite, sulfate, sulfamate, sulfamide as well as with phenylboronic and phenylarsonic acids. The best mCA XIII inhibitors were cyanate, thiocyanate, cyanide and sulfamide, with K(I)-s in the range of 0.25microM-0.74 mM, whereas fluoride, iodide, azide, carbonate and hydrogen sulfide were less effective (K(I)-s in the range of 3.0-5.5mM). The least effective inhibitors were sulfate, chloride and bicarbonate (K(I)-s in the range of 138-267 mM). The affinity of mCA XIII for anions is very different from that of the other cytosolic isozymes (hCA I and II) or the mitochondrial isozyme hCA V. This resistance to inhibition by the physiological anions bicarbonate and chloride suggests an evolutionary adaptation of CA XIII to the presence of high concentrations of such anions (e.g., in the reproductive tract of both female and male), and the possible participation of this isozyme (similarly to CA II, CA IV and CA V) in metabolons with proteins involved in the anion exchange and transport, such as the anion exchangers (AE1-3) or the sodium bicarbonate co-transporter (NBC1 and NBC3) proteins, which remain to be identified.  相似文献   

4.
The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically, and investigated for its inhibition with a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate, and some of its isosteric species. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5) s(-1) and k(cat)/K(m) of 9.8x10(7) M(-1) s(-1). scCA was weakly inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 16.8-55.6 mM) and strongly inhibited by bromide, iodide, and sulfamide (K(I)s of 8.7-10.8 microM). The other investigated anions showed inhibition constants in the low millimolar range.  相似文献   

5.
The cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isozyme III (hCA III) has been cloned and purified by the GST-fusion protein method. Recombinant pure hCA III had the following kinetic parameters for the CO(2) hydration reaction at 20 degrees C and pH 7.5: k(cat) of 1.3 x 10(4) s(- 1) and k(cat)/K(M) of 2.5.10(5) M(- 1) s(- 1). The first detailed inhibition study of this enzyme with anions is reported. Inhibition data of the cytosolic isozymes hCA I - hCA III with a large number of anions (halides, pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrosulfide, sulfate, sulfamic acid, sulfamide, etc.), were determined and these values are comparatively discussed for these three cytosolic isoforms. Fluoride, nitrate, nitrite, phenylboronic acid and phenylarsonic acid (as anions) were weak hCA III inhibitors (K(I)s of 21-78.5 mM), whereas bicarbonate, chloride, bromide, sulfate and several other simple anions showed K(I)s around 1 mM. The best hCA III inhibitors were carbonate, cyanide, thiocyanate, azide and hydrogensulfide, which showed K(I)s in the range of 10-90 microM. It is difficult to explain the inhibitory activity of carbonate (K(I) of 10 microM) against hCA III, also considering the fact that this ion has an affinity of 15-73 mM for hCA I and II and is in equilibrium with one of the substrates of this enzyme, i.e., bicarbonate, which is a much weaker inhibitor (K(I) of 0.74 mM against hCA III, of 12 mM against hCA I and of 85 mM against hCA II).  相似文献   

6.
The membrane-associated human isozyme of carbonic anhydrase, hCA IV, has been investigated for its interaction with anion inhibitors, for the CO(2) hydration reaction catalyzed by this enzyme. Surprisingly, halides were observed to act as potent hCA IV inhibitors, with inhibition constants in the range of 70-90 microM, although most of these ions, and especially fluoride, the best hCA IV inhibitor among the halides, are weak inhibitors of other isozymes, such as hCA I, II and V. The metal poisons cyanate, cyanide and hydrogen sulfide were weaker hCA IV inhibitors (K(i)'s in the range of 0.6-3.9 mM), whereas thiocyanate, azide, nitrate and nitrite showed even weaker inhibitory properties (K(i)'s in the range of 30.8-65.1 mM). Sulfate was a good hCA IV inhibitor (K(i) of 9 mM), although it is a much weaker inhibitor of isozymes I, II, V and IX. Excellent hCA IV inhibitory properties showed sulfamic acid, sulfamide, phenylboronic acid and phenylarsonic acid, with K(i)'s in the range of 0.87-0.93 microM, whereas their affinities for the other investigated isozymes were in the millimolar range. The interaction of some anions with the mitochondrial isozyme hCA V has also been investigated for the first time here. It has been observed that among all these isozymes, hCA V has the lowest affinity for bicarbonate and carbonate (K(i)'s in the range of 82-95 mM), which may represent an evolutionary adaptation of this isozyme to the rather alkaline environment (pH 8.5) within the mitochondria, where hCA V plays important functions in some biosynthetic reactions involving carboxylating enzymes (pyruvate carboxylase and acetyl coenzyme A carboxylase). There are important differences of affinity for anions between the two membrane-associated isozymes, hCA IV and hCA IX.  相似文献   

7.
Metal complexing anions represent an important class of inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the transmembrane isozymes CA XII (tumor-associated) and XIV with anions is reported. These isozymes showed inhibition profiles with physiologic/non-physiologic anions quite distinct from any other cytosolic (CA I and II) or transmembrane isoforms (e.g., CA IX) investigated earlier. hCA XII has a good affinity for fluoride and bicarbonate but is not inhibited by heavier halides, perchlorate, nitrate, and nitrite. The best hCA XII inhibitors were cyanide (K(I) of 1 microM) and azide (K(I) of 80 microM). hCA XIV was on the other hand weakly inhibited by fluoride and not at all inhibited by perchlorate, but showed good affinity for most other anions investigated here. Chloride and bicarbonate showed K(I)s in the range of 0.75-0.77 mM for this isoform. The best hCA XIV anion inhibitors were sulfate, phenylarsonic, and phenylboronic acid (K(I) in the range of 10-92 microM).  相似文献   

8.
The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes; the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V, and the tumor-associated, transmembrane hCA IX, with anions isosteric and isoelectronic with sulfate, nitrate, and carbonate; such as chlorate, perchlorate, bromate, iodate, periodate, silicate, bismuthate, vanadate, molybdate, and wolframate is reported. Apparently, the geometry of the inhibitor (tetrahedral or trigonal) does not influence its binding to the Zn(II) ion of the enzyme active site, but the nature of the central element is the most important factor influencing potency. Isozymes hCA I and II are best inhibited by chlorate, perchlorate, and silicate, together with the anions structurally related to sulfate, sulfamate, and sulfamidate, but sulfate itself is a weak inhibitor (inhibition constant of 74 mM against hCA I and 183 mM against hCA II). Molybdate is a very weak hCA I inhibitor (K(I) of 914 mM) but it interacts with hCA II (K(I) of 27.5mM). Isozyme IV is well inhibited by sulfate (K(I) of 9 mM), sulfamate, and sulfamidate (in the low micromolar range), but not by perchlorate (K(I) of 767 mM). The mitochondrial isozyme V has the lowest affinity for sulfate (K(I) of 680 mM) and carbonate (K(I) of 95 mM) among all the investigated isozymes, suggesting on one hand its possible participation in metabolon(s) with sulfate anion exchanger(s), and on the other hand an evolutionary adaptation to working at higher pH values (around 8.5 in mitochondria) where rather high amounts of carbonate in equilibrium with bicarbonate may be present. Metasilicate, isosteric to carbonate, is also about a 10 times weaker inhibitor of this isozyme as compared to other CAs investigated here (K(I) of 28.2 mM). Surprisingly, the tumor-associated isozyme IX is resistant to sulfate inhibition (K(I) of 154 mM) but has affinity in the low micromolar range for carbonate, sulfamate, and sulfamidate (K(I) in the range of 8.6-9.6 microM). This constitutes another proof that this isozyme best works at acidic pH values present in tumors, being inhibited substantially at higher pH values when more carbonate may be present. Bromate and chlorate are quite weak CA IX inhibitors (K(I) s of 147-274 mM).  相似文献   

9.
An inhibition study of the cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozyme VII (hCA VII) with anions has been conducted. Cyanate, cyanide, and hydrogensulfite were weak hCA VII inhibitors (K(I)s in the range of 7.3-15.2 mM). Cl- and HCO3- showed good inhibitory activity against hCA VII (K(I)s of 0.16-1.84 mM), suggesting that this enzyme is not involved in metabolons with anion exchangers or sodium bicarbonate cotransporters. The best inhibitors were sulfamate, sulfamide, phenylboronic, and phenylarsonic acid (K(I)s of 6.8-12.5 microM).  相似文献   

10.
A high activity α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from various tissues of the Antarctic seal Leptonychotes weddellii. The new enzyme, denominated lwCA, has a catalytic activity for the physiologic CO(2) hydration to bicarbonate reaction, similar to that of the high activity human isoform hCA II, with a k(cat) of 1.1×10(6) s(-1), and a k(cat)/K(m) of 1.4×10(8) M(-1) s(-1). The enzyme was highly inhibited by cyanate, thiocyanate, cyanide, bicarbonate, carbonate, as well as sulfamide, sulfamate, phenylboronic/phenylarsonic acids (K(I)s in the range of 46-100 μM). Many clinically used sulfonamides, such as acetazolamide, methazolamide, dorzolamide, brinzolamide and benzolamide were low nanomolar inhibitors, with K(I)s in the range of 5.7-67 nM. Dichlorophenamide, zonisamide, saccharin and hydrochlorothiazide were weaker inhibitors, with K(I)s in the range of 513-5390 nM. The inhibition profile with anions and sulfonamides of the seal enzyme was rather different from those of the human isoforms hCA I and II. The high sensitivity to bicarbonate inhibition of lwCA, unlike that of the human enzymes, may reflect an evolutionary adaptation to the deep water, high CO(2) partial pressure and hypoxic conditions in which Weddell seals spend much of their life.  相似文献   

11.
A detailed inhibition study of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the beta- and gamma-families from Archaea with sulfonamides has been performed. Compounds included in this study were the clinically used sulfonamide CA inhibitors, such as acetazolamide, methazolamide, ethoxzolamide, topiramate, valdecoxib, celecoxib, dorzolamide, sulfanilamide, dichlorophanamide, as well as sulfanilamide analogs, halogenated sulfanilamides, and some 1,3-benzenedisulfonamide derivatives. The two gamma-CAs from Methanosarcina thermophila (Zn-Cam and Co-Cam) showed very different inhibitory properties with these compounds, as compared to the alpha-CA isozymes hCA I, II, and IX, and the beta-CA from Methanobacterium thermoautotrophicum (Cab). The best Zn-Cam inhibitors were sulfamic acid and acetazolamide, with inhibition constants in the range of 63-96 nM, whereas other investigated aromatic/heterocylic sulfonamides showed a rather levelled behavior, with KIs in the range of 0.12-1.70 microM. The best Co-Cam inhibitors were topiramate and p-aminoethyl-benzenesulfonamide, with KIs in the range of 0.12-0.13 microM, whereas the worst one was homosulfanilamide (KI of 8.50 microM). In the case of Cab, the inhibitory power of these compounds varied to a much larger extent, with sulfamic acid and sulfamide showing millimolar affinities (KIs in the range of 44-103 mM), whereas the best inhibitor was ethoxzolamide, with a KI of 5.35 microM. Most of these sulfonamides showed inhibition constants in the range of 12-100 microM against Cab. Thus, the three CA families investigated up to now possess a very diverse affinity for sulfonamides, the inhibitors with important medicinal, and environmental applications.  相似文献   

12.
The newly discovered thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 encodes an α-carbonic anhydrases (CAs, EC 4.2.1.1) which is highly catalytically active and thermostable. Here we report the inhibition of this enzyme, denominated SspCA, with inorganic and complex anions and other molecules interacting with zinc proteins. SspCA was inhibited in the micromolar range by diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic and phenylarsonic acid, trithiocarbonate and selenocyanide (K(I)s of 4-70μM) and in the submillimolar one by iodide, cyanide, (thio)cyanate, hydrogen sulfide, azide, nitrate, nitrite, many complex anions incorporating heavy metal ions and iminodisulfonate (K(I)s of 0.48-0.86mM). SspCA was not substantially inhibited by bicarbonate and carbonate, hydrogensulfite and peroxidisulfate (K(I)s in the range of 21.1-84.6mM). The exceptional thermostability and lack of strong affinity for hydrogensulfide, bicarbonate, and carbonate make this enzyme an interesting candidate for biotechnological applications of enzymatic CO(2) fixation.  相似文献   

13.
An α-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the living fossil sponge Astrosclera willeyana, Astrosclerin, was investigated for its inhibition profile with simple inorganic anions, complex anions and other small molecules known to interact with these zinc enzymes. Astrosclerin is a catalytically highly efficient enzyme, and is inhibited in the low micromolar range by sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, and in the submillimolar range by a variety of anions including fluoride, chloride, cyanate, thiocyanate, cyanide, hydrogen sulfide, bisulfate, stannate, perosmate, divanadate, perrhenate, perruthenate, selenocyanide, trithiocarbonate, diethyldithiocarbamate and iminodisulfonate. Less efficient Astrosclerin inhibitors were sulfate, bromide, iodide, azide, bicarbonate, carbonate, tetraborate and perchlorate (K(I)s of 5.11-30.6mM) whereas tetrafluoroborate was not at all inhibitory. Because Astrosclerin is involved in calcification processes in vivo, its anion inhibition profile may be important for future studies designed to shed light on the physiologic functions of α-CAs in marine organisms.  相似文献   

14.
The membrane-associated mouse isozyme of carbonic anhydrase XV (mCA XV), has been investigated for its interaction with anion inhibitors. mCA XV is an isoforms possessing a very particular inhibition profile by anions, dissimilar to that of all other mammalian CAs investigated earlier. Many simple inorganic anions (thiocyanate, cyanide, azide, bicarbonate, hydrogen sulfide, bisulfite and sulfate) showed low micromolar inhibition constants against mCA XV (KIs of 8.2–10.1 μM), whereas they acted as much weaker (usually millimolar) inhibitors of other isoforms. Halides, nitrate, nitrite, carbonate, sulfamate, sulfamide and phenylboronic/arsonic acid were weaker inhibitors, with inhibition constants in the range of 27.6–288 μM. Our data may be useful for the design of more potent inhibitors of mCA XV (considering various zinc binding groups present in the anions investigated here, e.g., the sulfonate one) and for understanding some physiologic/pharmacologic consequences of mCA XV inhibition by anions such as bicarbonate or sulfate which show quite high affinity for it.  相似文献   

15.
The catalytic activity and inhibition of the beta-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Candida albicans (Nce103) and Cryptococcus neoformans (Can2) with inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate were investigated. The two enzymes showed appreciable CO(2) hydrase activity (k(cat) in the range of (3.9-8.0)x10(5)s(-1), and k(cat)/K(m) in the range of (4.3-9.7)x10(7)M(-1)s(-1)). Can2 was weakly inhibited by cyanide and sulfamic acid (K(I)s of 8.22-13.56 mM), while all other anions displayed more potent inhibition. Nce103 was strongly inhibited by cyanide and carbonate (K(I)s of 10-11 microM), and weakly inhibited by sulfate, phenylboronic, and phenyl arsonic acid (K(I)s of 14.15-30.85 mM). These data demonstrate that pathogenic, fungal beta-CAs may be targets for the development of antifungals that have a novel mechanism of action.  相似文献   

16.
The unique secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4x10(5)s(-1) and k(cat)/K(M) of 4.9x10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as isoforms CA I or CA IX. A series of anions (such as bicarbonate, chloride, nitrate, etc.) were shown to inhibit the activity of the enzyme, with inhibition constants typically in the range of 0.60-0.90mM. The best hCA VI inhibitors were cyanide, azide, sulfamide, and sulfamate, with inhibition constants in the range of 70-90microM.  相似文献   

17.
The inhibition of a coral carbonic anhydrase (CA, EC 4.2.1.1) has been investigated with a series of inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate. The full-length scleractinian coral Stylophora pistillata CA, STPCA, has a significant catalytic activity for the physiological reaction of CO2 hydration to bicarbonate, similarly to the ubiquitous human isoforms hCA I (cytosolic) and hCA VI (secreted). The best STPCA anion inhibitors were bromide, iodide, carbonate, and sulfamate, with inhibition constants of 9.0–10.0 μM.  相似文献   

18.
Mutation of amino acid residues 94, 96 and 119 to histidine(s) in the human carbonic anhydrase (CA, EC 4.2.1.1) related proteins CARP VIII, X and XI restored the zinc binding and catalytic activity for the hydration of CO2 to bicarbonate. CA VIII, X and XI thus obtained showed high catalytic activity (67.3–92.0% of the activity of hCA II and much higher compared to hCA I) and were inhibited in the milli-micromolar range by inorganic anions, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid. Among the three new isoforms, hCA X was the most efficient enzyme and also showed the highest affinity for anion inhibitors (KIs of 3.6–68 μM for phenylboronic acid, sufamic acid, sulfamide, cyanide and azide). hCA VIII was poorly inhibited by halides, cyanate, nitrate and sulfate (KIs of 38.4–65.4 mM), whereas CA XI had a behavior intermediate between that of hCA VIII and X, both regarding the catalytic activity and sensitivity to anion inhibitors.  相似文献   

19.
The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V and the tumour associated, transmembrane hCA IX, with complex anions incorporating fluoride, chloride and cyanide, as well as B(III), Si(IV), P(V), As(V), Al(III), Fe(II), Fe(III), Pd(II), Pt(II), Pt(IV), Cu(I), Ag(I), Au(I) and Nb(V) species has been investigated. Apparently, the most important factors influencing activity of these complexes are the nature of the central metal ion/element, and its charge. Geometry of these compounds appears to be less important, since both linear, tetrahedral, octahedral as well as pentagonal bipyramidal derivatives led to effective inhibitors. However, the five isozymes showed very different affinities for these anion inhibitors. The best hCA I inhibitors were cyanide, dicyanocuprate and dicyanoaurate (K(I)s in the range of 0.5-7.7 microM), whereas the least effective were fluoride and hexafluoroarsenate. The best hCA II inhibitors were cyanide, hexafluoroferrate and tetrachloroplatinate (K(I)s in the range of 0.02-0.51 mM), whereas the most ineffective ones were fluoride, hexafluoroaluminate and chloride. The best hCA IV inhibitors were dicyanocuprate (K(I) of 9.8 microM) and hexacyanoferrate(II) (K(I) of 10.0 microM), whereas the worst ones were tetrafluoroborate and hexafluoroaluminate (K(I)s in the range of 124-126 mM). The most effective hCA V inhibitors were cyanide, heptafluoroniobate and dicyanocuprate (K(I)s in the range of 0.015-0.79 mM), whereas the most ineffective ones were fluoride, chloride and tetrafluoroborate (K(I)s in the range of 143-241 mM). The best hCA IX inhibitors were on the other hand cyanide, heptafluoroniobate and dicyanoargentate (K(I)s in the range of 4 microM-0.33 mM), whereas the worst ones were hexacyanoferrate(III) and hexacyanoferrate(II).  相似文献   

20.
The bacterial pathogen Neisseria gonorrhoeae encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), NgCA, which was investigated for its inhibition with a series of inorganic and organic anions. Perchlorate and hexafluorophosphate did not significantly inhibit NgCA CO2 hydrase activity, whereas the halides, azide, bicarbonate, carbonate, stannate, perosmate, diphosphate, divanadate, perruthenate, and trifluoromethanesulfonate showed inhibition constants in the range of 1.3–9.6 mM. Anions/small molecules such as cyanate, thiocyanate, nitrite, nitrate, bisulphite, sulphate, hydrogensulfide, phenylboronic acid, phenylarsonic acid, selenate, tellurate, tetraborate, perrhenate, peroxydisulfate, selenocyanate, iminodisulfonate, and fluorosulfonate showed KIs in the range of 0.15–1.0 mM. The most effective inhibitors detected in this study were sulfamide, sulfamate, trithiocarbonate and N,N-diethyldithiocarbamate, which had KIs in the range of 5.1–88 µM. These last compounds incorporating the CS2- zinc-binding group may be used as leads for developing even more effective NgCA inhibitors in addition to the aromatic/heterocyclic sulphonamides, as this enzyme was recently validated as an antibacterial drug target for obtaining novel antigonococcal agents  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号