首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HslVU complex is a bacterial two-component ATP-dependent protease, consisting of HslU chaperone and HslV peptidase. Investigation of protein-protein interactions using SPR in Escherichia coli HslVU and the protein substrates demonstrates that HslU and HslV have moderate affinity (Kd = 1 microM) for each other. However, the affinity of HslU for HslV fivefold increased (Kd approximately 0.2 microM) after binding with the MBP approximately SulA protein indicating the formation of a "ternary complex" of HslV-HslU-MBP approximately SulA. The molecular interaction studies also revealed that HslU strongly binds to MBP approximately SulA with 10(-9) M affinity but does not associate with nonstructured casein. Conversely, HslV does not interact with the MBP-SulA whereas it strongly binds with casein (Kd = 0.2 microM) requiring an intact active site of HslV. These findings provide evidence for "substrate-induced" stable HslVU complex formation. Presumably, the binding of HslU to MBP approximately SulA stimulates a conformational change in HslU to a high-affinity form for HslV.  相似文献   

2.
Mn(II) EPR binding studies with reduced acyl-carrier protein (ACP-SH) strongly suggest the presence of two relatively high-affinity manganese-binding sites (average Kd/site approximately 80 microM) at physiological pH. Lowering the pH or titrating with sodium chloride reduces the average number of bound divalent cations and decreases the binding affinity. This is consistent with the idea that anionic ligand(s), e.g. the carboxylate of glutamic or aspartic acid, on the protein are involved in manganese ion coordination. At pH values above 8.0, binding affinity is also reduced, whereas the average number of bound metal ions increases to about five at pH 8.5. By interacting weakly with divalent cations (average Kd/site approximately 1 mM), octanoyl acyl-carrier protein (OcoACP) exhibits dramatically different metal-ion-binding properties compared to ACP-SH. Calcium and magnesium can compete in either ACP species for manganese binding. Photochemically-induced dynamic nuclear polarisation 1H-NMR experiments strongly suggest that ACP-SH and OcoACP undergo at pH-induced conformational change between pH 5.5 and pH 7.0, and that divalent cations stabilize the protein against such pH-induced structural perturbations.  相似文献   

3.
M Gigli  A Consonni  G Ghiselli  V Rizzo  A Naggi  G Torri 《Biochemistry》1992,31(26):5996-6003
Binding between low-density lipoproteins (LDL) and fluorescein-labeled heparin was studied quantitatively with a modified form of a published procedure [Cardin, A. D., Randall, C. I., Hirose, N., & Jackson, R. L. (1987) Biochemistry 26, 5513-5518], using fluorescence anisotropy titrations. Assumption of binding site equivalence satisfactorily interpreted experimental data. Accordingly, the apparent total capacity, n, and the average dissociation constant, Kd, were estimated as n approximately 24 disaccharides per LDL particle and Kd approximately 4 microM in 0.05 M HEPES/0.1 M NaCl, pH 7.4, 22 degrees C. Competition experiments with unlabeled heparins were exploited for the quantitative study of Kd as a function of heparin chain length and sulfation degree (ns = sulfate groups per disaccharide). The former parameter was investigated with a series of bovine lung heparin fractions with Mw ranging from 1,800 to 21,000 and constant sulfation degree (ns = 2.8 +/- 0.1). A series of physically fractionated or chemically modified heparins having 1.2 less than ns less than 3.5 were used to explore the dependence on sulfation degree. LDL affinity was found to increase with increasing both ns and Mw: an empirical Mw-1.6 dependence represented very well the chain length data set; a linear dependence was observed for log Kd as a function of ns, after appropriate allowance was made for chain length differences among samples. This regularity confirmed that LDL-heparin binding is mainly driven by electrostatic forces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

5.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

6.
M T Mas  R F Colman 《Biochemistry》1985,24(7):1634-1646
Spectroscopic, ultrafiltration, and kinetic studies have been used to characterize interactions of reduced and oxidized triphosphopyridine nucleotides (TPNH and TPN), 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P), and adenosine 2',5'-bisphosphate [Ado(2',5')P2] with with TPN-specific isocitrate dehydrogenase. Close similarity of the UV difference spectra and of the protein fluorescence changes accompanying the formation of the binary complexes provides evidence for the binding of these nucleotides to the same site on the enzyme. From the pH dependence of the dissociation constants for TPNH binding to TPN-specific isocitrate dehydrogenase in the absence and in the presence of Mn2+, over the pH range 5.8-7.6, it has been demonstrated that the nucleotide binds to the enzyme in its unprotonated, metal-free form. The involvement of positively charged residues, protonated over the pH range studied, has been postulated. One TPNH binding site per enzyme subunit has been measured by fluorescence and difference absorption titrations. A dramatic effect of ionic strength on binding has been demonstrated: about a 1000-fold decrease in the dissociation constant for TPNH has been observed at pH 7.6 upon decreasing ionic strength from 0.336 (Kd = 1.2 +/- 0.2 microM) to 0.036 M (Kd = 0.4 +/- 0.1 nM) in the presence and in the absence of 100 mM Na2SO4, respectively. Weak competition of sulfate ions for the nucleotide binding site has been observed (KI = 57 +/- 3 mM). The binding of TPN in the presence of 100 mM Na2SO4 at pH 7.6 is about 100-fold weaker (Kd = 110 +/- 22 microM) than the binding of the reduced coenzyme and is similarly affected by ionic strength. These results demonstrate the importance of electrostatic interactions in the binding of the coenzyme to TPN-specific isocitrate dehydrogenase. The large enhancement of protein fluorescence caused by binding of TPN and Rib-P2-Ado-P (delta Fmax = 50%) and of Ado(2',5')P2 (delta Fmax = 41%) has been ascribed to a local conformational change of the enzyme. An apparent stoichiometry of 0.5 nucleotide binding site per peptide chain was determined for TPN, Rib-P2-Ado-P, and Ado(2',5')P2 from fluorescence titrations, in contrast to one binding site per enzyme subunit determined from UV difference spectral titration and ultrafiltration experiments. Thus, the binding of one molecule of the nucleotide per dimeric enzyme molecule is responsible for the total increase in protein fluorescence, while binding to the second subunit does not cause further change.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The binding isotherms of Mn2+ to bovine plasma protein C (PC), des(1-41)-light chain protein C (GDPC), and activated GDPC (GDAPC) have been measured. PC contains 14-16 total Mn2+ binding sites, a value that is reduced to approximately 7-8 in the presence of NaCl. The average Kd of the latter sites is 230 +/- 30 microM. Upon removal of a 41-residue peptide from the amino terminus of the light chain of PC, and, concomitantly, all of the gamma-carboxyglutamic acid residues, the resulting protein, GDPC, possesses a single Mn2+ site of Kd = 120 +/- 20 microM. Activation of GDPC to GDAPC results in a slight lowering of the Kd for the single Mn2+ binding site to 53 +/- 8 microM, a value that is essentially unchanged in the presence of monovalent cations, a competitive inhibitor of the enzyme, or an active site directed affinity label. The Mn2+ on GDAPC is displaced by Ca2+, suggesting that the protein binding site for these two divalent cations is the same. These studies establish that Mn2+ is a suitable spectroscopic probe for the Ca2+ binding site of GDAPC, and that the divalent cation site is separate from the monovalent cation site(s) and the active site of the enzyme.  相似文献   

8.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

9.
Ca2+ or Cd2+ binding and the conformational change induced by the metal binding in two frog bone Gla-proteins (BGP, termed BGP-1 and BGP-2) were studied by equilibrium dialysis and CD measurement. By CD measurement in the far-ultraviolet region, the alpha-helix content of both apoBGPs was found to be 8%. Binding of both Ca2+ and Cd2+ was accompanied with a change in the CD spectrum, and the alpha-helix content increased to 15 and 25% for BGP-1 and BGP-2, respectively. CD measurement in the near-ultraviolet region indicated that the environment of aromatic amino acid residues in the protein molecule was changed by metal binding. Equilibrium dialysis experiments indicated that each of these two protein binds specifically 2 mol of Ca2+, and nonspecifically an additional 3-4 mol of Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. According to the two separate binding sites model, BGP-1 has 1 high-affinity Ca2+ binding site (Kd1 = 0.17 mM) and 1 low-affinity site (Kd2 = 0.29 mM), and BGP-2 contains 1 high-affinity site (Kd1 = 0.14 mM) and 1 low-affinity site (Kd2 = 0.67 mM). In addition, 2 Cd2+ bound to a high-affinity binding site on BGP-1 with Kd1 of 10.4 microM, and 1 Cd2+ bound to a low-affinity binding site with Kd2 of 41.5 microM. On the other hand, BGP-2 had three classes of binding sites and 1 Cd2+ bound to each binding site with Kd1 = 3.6 microM, Kd2 = 16.3 microM, Kd3 = 51.7 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

11.
Interaction of heparin with annexin V   总被引:5,自引:0,他引:5  
The energetics and kinetics of the interaction of heparin with the Ca2+ and phospholipid binding protein annexin V, was examined and the minimum oligosaccharide sequence within heparin that binds annexin V was identified. Affinity chromatography studies confirmed the Ca2+ dependence of this binding interaction. Analysis of the data obtained from surface plasmon resonance afforded a Kd of approximately 21 nM for the interaction of annexin V with end-chain immobilized heparin and a Kd of approximately 49 nM for the interaction with end-chain immobilized heparan sulfate. Isothermal titration calorimetry showed the minimum annexin V binding oligosaccharide sequence within heparin corresponds to an octasaccharide sequence. The Kd of a heparin octasaccharide binding to annexin V was approximately 1 microM with a binding stoichiometry of 1:1.  相似文献   

12.
The two-way and three-way interactions among active-site-blocked bovine thrombin, bovine protein C, and the elastase fragment of rabbit thrombomodulin (elTM) were examined by analytical ultracentrifugation at 23.3 degrees C in 100 mM NaCl, 50 mM Tris (pH 7.65), and 1 mM benzamidine, in the presence of 0 to 5 mM calcium chloride. Thrombin and elTM form a tight (Kd less than 10(-8) M) 1:1 complex in the absence of Ca2+ that weakens with the addition of Ca2+ (Kd approximately 4 microM in 5 mM Ca2+). Without Ca2+, thrombin and protein C form a 1:1 complex (Kd approximately 1 microM) and what appears to be a 1:2 thrombin-protein C complex. The Kd for the 1:1 complex weakens over 100-fold in 5 mM CaCl2. Protein C and elTM form a Ca(2+)-independent 1:1 complex (Kd approximately 80 microM). Nearly identical binding to thrombin and elTM is observed when active-site-blocked activated bovine protein C is substituted for protein C. Thrombin inhibited by diisopropyl fluorophosphate and thrombin inhibited by a tripeptide chloromethyl ketone exhibited identical behavior in binding experiments, suggesting that the accessibility of protein C to the substrate recognition cleft of these two forms of thrombin is nearly equal. Human protein C binds with lower affinity than bovine protein C. Ternary mixtures also were examined. Protein C, elTM, and thrombin form a 1:1:1 complex which dissociates with increasing [Ca2+]. In the absence of Ca2+, protein C binds to the elTM-thrombin complex with an apparent Kd approximately 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

14.
The total membrane fraction of human platelets was found to contain high affinity sites of L-[3H]glutamic acid binding (Kd = 100 nM, Bmax = 1.06 pmol/mg protein). The pH optimum for binding is at pH approximately 6.9 Na+ (1-150 mM) inhibit glutamate binding by platelet membranes (IC50 = 12 mM). Ca2+ (50-100 microM) stimulate the binding by 10-20% and inhibit it by 20-30% at concentrations of 1-5 mM. Monoclonal antibodies to the glutamate receptor strongly suppress the L-[3H]glutamate binding by platelet membranes (IC50 = 300 nm). The presence in human platelets of a glutamate-sensitive receptor complex similar to the central nervous system glutamate receptor is postulated.  相似文献   

15.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions, ATPase velocity rose 4-8-fold (depending on pH and magnesium concentration) when the ATP concentration was increased from 1 microM to 0.1 mM. Binding of ATP and ADP enhanced the intrinsic fluorescence of sarcoplasmic reticulum ATPase, but AMP and adenosine did not affect it. Both filtration and fluorescence measurements showed that binding of metal-free ATP is independent of pH (Kd = 20-25 microM) but that the presence of magnesium induces pH dependence of the binding of the Mg.ATP complex (Kd = 10 microM at pH 6.0 and 1.5 microM at pH 8.0). Binding of metal-free ADP was pH-dependent but was not affected by magnesium. High magnesium concentrations inhibited nucleotide binding. These results suggest that ATP interacts with two different domains of Ca-ATPase that form the catalytic site. The first domain may bind the adenine moiety of the substrate, and the pH dependence of ADP binding suggests the participation of His683 in this region. The second domain of the catalytic site may bind the gamma-phosphate and the magnesium ion of the Mg.ATP complex and constitute the locus of the electrostatic interactions between the substrate and the enzyme.  相似文献   

16.
The purpose of this work was to study tolmetin plasma protein binding in an experimental model of hypoalbuminemia in the rat. Hypoalbuminemia was produced by repetitive plasmapheresis, achieving a 26.2 +/- 4.6% reduction in albumin circulating levels. Rats then received a 100 mg/kg oral tolmetin dose. Control rats received oral tolmetin 10, 56 or 100 mg/kg. Tolmetin plasma protein binding was determined by an ultrafiltration technique using an in vivo pharmacokinetic approach. Plasma protein binding data for the 3 doses studies in control animals could be described considering a single binding site with Kd = 21.9 +/- 2.1 microM and N = 0.98 +/- 0.05 sites per molecule of albumin. For hypoalbuminemic rats Kd was significantly increased (p < 0.05), while there was no significant change in the number of binding site per albumin molecule (Kd = 131.6 +/- 38.1 microM and N = 1.58 +/- 0.77). Our results show that hypoalbuminemia produces a disproportionate increase in the free fraction of tolmetin, not only by reducing albumin concentration, but also by a decrease in affinity. The mechanism responsible of such changes in affinity remains to be elucidated.  相似文献   

17.
K5 lyase of coliphage K5A degrades the K5 polysaccharide of encapsulated E. coli strains expressing the K5 antigen thereby contributing to virus binding and infection. We have investigated the affinities of the recombinant enzyme for different GAG ligands by isothermal fluorescence titrations and correlated them with substrate processing and protein structural changes. Chondroitin sulfate (CS) and heparan sulfate (HS) bound to K5 lyase with a Kd of 0.5 microM whereas heparin exhibited a Kd=1.1 microM. The natural substrate K5 polysaccharide displayed a similar apparent affinity as CS and HS but was the only ligand of the enzyme which induced a large structural rearrangement of the protein as detected by far-UV CD spectroscopy. Since significant enzymatic degradation was only found for the K5 polysaccharide peaking at 44 degrees C, but binding was also detected for heparin, we propose that the K5 lyase is able to discriminate between specific (acetylated/non-sulfated) and unspecific (acetylated/sulfated) ligands by its heparin binding motif in the C-terminus. This is proposed to be the origin for the enzyme's residual HS degrading activity.  相似文献   

18.
We have determined the relative affinities in solution for various metals which bind to the lone calcium-binding site of the D-galactose-binding protein which resembles the EF-hand loop. In order of affinity the metals are: Ca2+ approximately Tb3+ approximately Pb2+ greater than Cd2+ greater than Sr2+ greater than Mg2+ much greater than Ba2+. The binding affinity for calcium (Kd = 2 microM) and the slow off-rate determined for terbium (1 x 10(-3) s-1) and that the metal-binding site is unperturbed by sugar binding argue for a structural role. Furthermore, we have crystallographically refined the structure of the binding protein with the calcium substituted by cadmium, compared it with the calcium-bound structure, and found them to be identical. The results of these structural and solution studies support the hypothesis that for a given metal-binding loop, cation hydration energy, size, and charge are major factors contributing to binding affinity.  相似文献   

19.
Prothrombin possesses two high affinity and four low affinity gamma-carboxyglutamic acid (Gla)-dependent gadolinium binding sites. Earlier work (Price, P. A., Williamson, M. K., and Epstein, D. J. (1981) J. Biol. Chem. 256, 1172-1176) has shown that tritium can be specifically incorporated at the gamma-carbon of Gla in proteins at pH 5. In the present work we show that inclusion of saturating concentrations of Ca2+ in nondenaturing buffer systems ranging from pH 5.5 to 8.5 prevents the exchange of tritium into all 10 Gla residues of prothrombin. Similarly, saturating concentrations of Gd3+ prevent tritium incorporation into Gla at pH 5.5. Positive cooperativity was observed for the binding of Gd3+ to human prothrombin (at pH 5.5) for the two high affinity sites (Kd congruent to 35 nM). The four low affinity sites bind Gd3+ with a Kd congruent to 5 microM. Incubation of prothrombin ranging in concentrations from 10 to 40 microM with 2 eq of Gd3+ at pH 5.5 prevents 5.7 (average of seven determinations) Gla residues from tritium incorporation. Sedimentation velocity experiments conducted at pH 5.5 indicate that prothrombin in the presence of saturating concentrations of Gd3+ polymerizes, most likely, to a trimer. Further, in the presence of 2 eq of Gd3+, calculated percent weight average concentration of monomer prothrombin is congruent to 100% at 10 microM, approximately equal to 95% at 20 microM, and congruento to 80% at 40 microM protein concentration. Thus, it appears that under conditions in which prothrombin primarily exists as a monomer, occupancy of the initial two metal binding sites by Gd3+ involves six Gla residues.  相似文献   

20.
Chloroplast coupling factor 1 (CF1) contains a high-affinity binding site for 8-anilino-1-napthalene sulphonate (ANS,Kd = 5-6 microM). The binding of ANS to the enzyme is associated with a fluorescence enhancement and a blue-shift in the emission spectrum. ANS only slightly inhibits ATP hydrolysis by CF1. Adenine nucleotides and inorganic phosphate induce a fast ANS fluorescence quenching of about 50% which is due to a decrease in the affinity of the enzyme for ANS (Kd increases from 6 microM to 22 microM) and in the fluorescence quantum yield of the bound probe (by 33%) but not in the number of ANS sites (n = 1). Conversely, Mg and Ca ions induce a fluorescence enhancement of bound ANS. Inactivation of the enzyme enhances ANS fluorescence, eliminates the response to adenine nucleotides and inorganic phosphate but increases the response to divalent metals. The affinity of latent CF1 for ADP (Kd = 12 microM) is considerably higher than for ATP (Kd = 95 microM) in buffer containing EDTA. The Kd for inorganic phosphate is 140 microM. Mg increases the apparent affinity for ATP (Kd = 28 microM) but not for ADP or Pi. Binding of ATP to the tight-sites does not inhibit the ADP or Pi-induced fluorescence quenching but decreases the affinity for ADP (Kd = 34 microM) and for inorganic phosphate (Kd = 320 microM). These results suggest that the ADP and phosphate binding sites are different but not independent from the tight sites. Activation of a Mg-specific ATPase in CF1 by octyl glucoside decreases the affinity for ADP and inorganic phosphate by about threefold but increases the affinity for ATP. ATPase activation of CF1 also increases the Ki for ADP inhibition of ATP hydrolysis. ATPase activation also influences the ANS responses to Ca and Mg. Ca-ATPase activation increases the fluorescence enhancement and the apparent affinity for Ca whereas Mg-ATPase activation specifically increases the Mg-induced fluorescence enhancement. The fluorescence of CF1-bound ANS is enhanced by Dio-9 and quenched by phloridzin, quercetin, Nbf-Cl and FITC. Nbf-Cl and FITC completely inhibit the ADP-induced fluorescence quenching whereas Dio-9 inhibits the Mg-induced fluorescence enhancement. ANS does not relieve the quercetin or phloridzin inhibition of ATP hydrolysis indicating that these inhibitors do not compete with ANS for a common binding site. ANS may be used, therefore, as a sensitive probe to detect conformational changes in CF1 in response to activation or inactivation and to binding of substrates and of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号