首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
VEGF 家族及其在肿瘤生长中作用的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)家族是一类多功能的细胞因子,在血管生成和淋巴管生成中具有直接和间接的调控作用,可促进内皮细胞增殖、促进血管生成以及增加血管的通透性。VEGF/VEGFR轴由多重配基和受体质量叠加交错组成,并且受体与配基结合具有专一性,在不同的细胞中具有不同的细胞类型表达和功能.启动VEGF信号通路,触发了一个网状的信号过程,从而促进血管内皮细胞生长、转移和存活。进来研究发现,VEGF的一个重要作用表现为可动员内皮祖细胞从骨髓向远处转移从而形成新生血管,因而有必要设计和发展针对这一途径的抑制因子。随着研究的深入,VEGF促进肿瘤血管生成的作用和与人类癌症的发病机制的关系是确定的,因此,抑制VEGF途径被确认为是一种重要的有效的抗癌模式  相似文献   

3.
Vascular endothelial cell growth factor (VEGF) is an endothelial cell-specific angiogenic and permeability-inducing factor that has been implicated in the pathogenesis of diabetic retinopathy. The objectives of this study are to compare VEGF and VEGF receptor expression between retinal and brain-derived endothelial cells cultured in 5 or 30 mM glucose for 5 days. Our results show that expression of cell-surface VEGF receptors, assessed by flow cytometry, is higher in retinal-derived endothelial cells. RT-PCR results show that both retinal and brain-derived endothelial cells express comparable levels and types of VEGF. Exposure to 30 mM glucose for 5 days did not alter levels of VEGF or VEGF receptors. The higher level of VEGF receptor expression in retinal endothelial cells suggests that the retinal microcirculation may be more sensitive to the effects of VEGF and this may contribute to the pathogenesis of diabetic retinopathy.  相似文献   

4.
Vascular endothelial growth factor (VEGF) blockade has been validated clinically as a treatment for human cancers, yet virtually all patients eventually develop progressive disease during therapy. In order to dissect this phenomenon, we examined the effect of sustained VEGF blockade in a model of advanced pediatric cancer. Treatment of late-stage hepatoblastoma xenografts resulted in the initial collapse of the vasculature and significant tumor regression. However, during sustained treatment, vessels recovered, concurrent with a striking increase in tumor expression of perlecan, a heparan sulfate proteoglycan. Whereas VEGF mRNA was expressed at the periphery of surviving clusters of tumor cells, both secreted VEGF and perlecan accumulated circumferential to central vessels. Vascular expression of heparanase, VEGF receptor-2 ligand binding, and receptor activation were concurrently maintained despite circulating unbound VEGF Trap. Endothelial survival signaling via Akt persisted. These findings provide a novel mechanism for vascular survival during sustained VEGF blockade and indicate a role for extracellular matrix molecules that sequester and release biologically active VEGF.  相似文献   

5.
Tubular sprouting in angiogenesis relies on division of labour between the endothelial tip cell, leading and guiding the sprout and their neighbouring stalk cells, which divide and form the vascular lumen. We previously learned how the graded extracellular distribution of heparin-binding Vascular Endothelial Growth Factor (VEGF)-A orchestrates and balances tip and stalk cell behaviour. Recent data now provided insight into the regulation of tip cell numbers, illustrating how Delta-like (Dll)4 – Notch signalling functions to limit the explorative tip cell behaviour induced by VEGF-A. These data also provided a first answer to the question why not all endothelial cells stimulated by VEGF-A turn into tip cells. Here we review this new model and discuss how VEGF-A and Dll4/Notch signalling may interact dynamically at cellular level to control vascular patterning.  相似文献   

6.
Little is known about the expression pattern of vascular endothelial growth factor (VEGF) among smooth muscle cells of different arterial regions. Therefore, we have conducted studies aimed at increasing expression of VEGF in cultured human smooth muscle cells (SMCs) from different sites: aorta, umbilical artery, and coronary artery. Two plasmids harboring human VEGF121 and VEGF165 isoforms, respectively, were constructed and lipotransfected into vascular SMCs, using the Fu-GENE 6. Extensive optimization of transfection conditions were performed prior to this. Different basal levels of VEGF were observed between cell types: from 0.51–0.95 pg/mL/μg protein in umbilical artery, through 2.32–2.39 pg/mL/μg protein in coronary artery, to 5.45–7.52 pg/mL/μg protein in aortic SMCs. Significant differences in responses to transfection were also observed: The increase in VEGF production was most pronounced in umbilical artery SMCs (e.g., with 4 μg VEGF121-cDNA/in the wells)—an approximate 600-fold as opposed to an 18-fold increase in aortic SMCs and a 29-fold increase in coronary artery SMCs. In addition, we observed significant increases in proliferation rate of aortic and coronary endothelial cells (ECs), after incubation with conditioned medium from VEGF-transfected SMCs. Observed changes differed in relation to cell origin and isoform.  相似文献   

7.
VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.  相似文献   

8.
9.
VEGF isoforms     
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.  相似文献   

10.
缺血缺氧可造成全身多个系统受损,尤其是中枢神经系统,缺血缺氧对脑损害最严重,血管内皮生长因子(VEGF)的血管生成作用、神经保护作用、神经再生作用能在一定程度上改善缺血缺氧性脑损伤,是一种潜在的缺血缺氧保护剂,本文就近年来VEGF在缺血缺氧性脑损伤方面的相关研究综述如下.  相似文献   

11.
Neoangiogenesis is a significant event in a cascade of growth and progression of solid tumors. Assessment of the tissue expression and measurement of the concentrations of angiogenic and antiangiogenic factors, contributing to this process, in body fluids, can be used not only for an early diagnosis of tumors and their staging but also as an important parameter of treatment efficiency evaluation. The aim of this study is to evaluate the concentrations of crucial angiogenic cytokine VEGF and its soluble receptors in peripheral blood of patients with benign and malignant thyroid tumors. The study comprised 35 patients with thyroid cancer and 10 patients with follicular neoplasm, both diagnosed by means of ultrasound-guided fine-needle aspiration biopsy. For these patients surgical treatment was instituted. The examined angiogenic factors were determined preoperatively and 4 weeks after the surgical procedures. The results were compared with the control group which comprised 10 healthy individuals. Analysing obtained results, we demonstrated high VEGF concentrations and low soluble VEGF receptor concentrations in patients with benign and malignant thyroid tumors. This fact confirms a vital role of VEGF in angiogenesis of thyroid tumors and a hypothetical antiangiogenic activity of its soluble receptors. Disequilibrium of the above-mentioned angiogenic factor concentrations is probably essential for the growth and progression of benign and malignant thyroid tumors.  相似文献   

12.
13.
血管内皮生长因子受体的结构与功能   总被引:6,自引:0,他引:6  
血管内皮生长因子(VEGF)受体是存在于血管内皮细胞,介导内皮细胞增殖分化的跨膜受体.研究较多的有两种VEGF特异受体:Flt和KDR.Flt和KDR的基因结构及染色体定位已基本确定,这二者均属RTK Ⅲ型受体,结构相似.细胞外区均有7个类似免疫球蛋白结构,细胞内区催化域均有酪氨酸激酶插入区.当VEGF与受体结合时,引起受体自身的磷酸化,发生细胞内反应.在血管发生与生长、创伤修复、炎症、肿瘤和某些血管疾病中起重要作用.  相似文献   

14.
肺癌是世界上主要癌症杀手之一,大部分肺癌病人都死于肿瘤转移所引起的并发症.由于现在大部分的肺癌病人预后不佳,因此寻找新方法、新途径治疗尤为重要.抗血管生成是目前的肿瘤治疗研究热点之一.对目前以抗血管内皮生成因子为手段的肺癌治疗方面的研究作一综述.  相似文献   

15.
目的:研究针对VEGF的RNAi技术对人子宫内膜癌细胞系ishikawa细胞中VEGF的抑制作用及对细胞生长、增殖的影响。方法:设计并合成针对VEGF序列特异性siRNA及阴性对照siRNA,转染ishikawa细胞,分别于转染后12h、24h、48h、72h、7d后提取细胞RNA,应用实时荧光定量PCR检测其对VEGF mRNA表达水平的影响,MTT法检测细胞增殖的情况,于转染后48h收集细胞软琼脂培养检测细胞克隆形成能力。结果:转染针对siRNA-VEGF的ishikawa细胞,于转染后12h、24h、48h、72h VEGF mRNA表达水平明显下降、细胞增殖受到明显的抑制,与对照组相比差异有统计学意义(P<0.05),于转染后7天这种抑制作用消失(P>0.05)。转染后48h实验组细胞克隆形成率低于对照组(P<0.05)。结论:针对VEGF的RNAi技术可有效抑制子宫内膜癌细胞系ishikawa细胞中VEGF基因的表达,抑制细胞生长增殖及细胞集落形成能力,提示VEGF基因在子宫内膜癌的发生、发展中可能具有重要作用,为进一步利用RNAi技术抑制肿瘤生长、血管形成及局部侵袭和远处转移提供研究基础。  相似文献   

16.
Vascular endothelial growth factor (VEGF) is a hypoxia-induced protein that produces vascular permeability, and limited evidence suggests a possible role for VEGF in the pathophysiology of acute mountain sickness (AMS) and/or high-altitude cerebral edema (HACE). Previous studies demonstrated that plasma VEGF alone does not correlate with AMS; however, soluble VEGF receptor (sFlt-1), not accounted for in previous studies, can bind VEGF in the circulation, reducing VEGF activity. In the present study, we hypothesized that free VEGF is greater and sFlt-1 less in subjects with AMS compared with well individuals at high altitude. Subjects were exposed to 4,300 m for 19-20 h (baseline 1,600 m). The incidence of AMS was determined by using a modified Lake Louise symptom score and the Environmental Symptoms Questionnaire for cerebral effects. Plasma was collected at low altitude and after 24 h at high altitude, or at time of illness, and then analyzed by ELISA for VEGF and for soluble VEGF receptor, sFlt-1. AMS subjects had lower sFlt-1 at both low and high altitude compared with well subjects and a significant rise in free plasma VEGF on ascent to altitude compared with well subjects. We conclude that increased free plasma VEGF on ascent to altitude is associated with AMS and may play a role in pathophysiology of AMS.  相似文献   

17.
From a mouse model of hypoxia-induced pulmonary hypertension, we previously found a highly upregulated protein in the lung that we named hypoxia-induced mitogenic factor (HIMF), also known as found in inflammatory zone 1 (FIZZ1), and resistin-like molecule alpha (RELMalpha). However, the mechanisms of HIMF in the pulmonary vascular remodeling remain unknown. We now demonstrate that HIMF promoted cell proliferation, migration, and the production of vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) in pulmonary endothelial cells as well as the production of reactive oxygen species in murine monocyte/macrophage cells. HIMF-induced CD31-positive cell infiltrate in in vivo Matrigel plugs was significantly suppressed by VEGF receptor-2 (VEGFR2) blockade. In ex vivo studies, HIMF stimulated the production of VEGF, MCP-1, and stromal cell-derived factor-1 (SDF-1) in the lung resident cells, and VEGFR2 neutralization significantly suppressed HIMF-induced MCP-1 and SDF-1 production. Furthermore, intravenous injection of HIMF showed marked increase of CD68-positive inflammatory cells in the lungs, and these events were attenuated by VEGFR2 neutralization. Intravenous injection of HIMF also downregulated the expression of VEGFR2 in the lung. These results suggest that HIMF plays critical roles in pulmonary inflammation as well as angiogenesis.  相似文献   

18.
Vascular endothelial growth factor (VEGF), the most potent angiogenic factor identified to date, is associated with growth and metastasis of solid tumours, including melanoma. It has been shown in vitro that melanoma cells produce raised concentrations of VEGF. We examined the VEGF concentrations in plasma of 20 patients with primary melanoma, local recurrence and metastatic melanoma. We also studied the inhibiting effect of one antioxidant, N-acetylcysteine, on VEGF production in three human melanoma cell lines. We found elevated levels of VEGF (median 205 pg ml; 95 percent confidence interval, 80-414) in metastatic melanoma, with respect to primary and locally recurrent melanoma (75 pg/ml; 95 percent confidence interval, 35-130). The health control patients had levels of 25 pg/ml (95 percent confidence interval, 10-35). Human melanoma cell lines secreted VEGF in basal conditions (550-963 +/- 125 pg/ml) and N-acetylcysteine (0.5-20 mM) significantly decreased the VEGF production in a dose-dependent manner. VEGF concentrations were found to be raised in patients with primary melanoma, local recurrence, and above all, metastatic melanoma (P=0.008). N-acetylcysteine inhibits VEGF production in three human melanoma cell lines. This antioxidant might have therapeutic applications in metastatic melanoma in combination with other cytotoxic drugs.  相似文献   

19.
A critical event in tumor development is the formation of new blood vessels to provide oxygen, nutrients and growth factors to the rapidly growing cancer cells. This process of angiogenesis is complex, however, it is well established that vascular endothelial growth factor (VEGF)-mediated signaling is an important early event. Knockout mice studies have implicated the EP3 receptor in tumor development and angiogenesis; however, the signaling mechanism involved with this effect is unclear. We now show that stimulation of the EP3I isoform of the human EP3 receptor with prostaglandin E2 increases the mRNA expression of both VEGF and its cognate receptor VEGF receptor-1 (VEGFR-1). These inductions by the EP3I receptor involve the sequential activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Up-regulation of VEGF and VEGFR-1 mRNA by the human EP3I receptor has not been previously reported and further strengthen the role of this receptor in tumor-associated angiogenesis.  相似文献   

20.
Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors. In this work, peptides were designed to mimic the VEGF-binding site to its receptor VEGFR-2. The VEGF conformational peptide mimic, VEGF-P3(CYC), included two artificial cysteine residues, which upon cyclization constrained the peptide in a loop native-like conformation to better mimic the anti-parallel structure of VEGF. The engineered cyclic VEGF mimic peptide demonstrated the highest affinity to VEGFR-2 by surface plasmon resonance assay. The VEGF peptide mimics were evaluated as inhibitors in several in vitro assays in which VEGF-dependent signaling pathways were observed. All VEGF mimics inhibited VEGFR-2 phosphorylation with VEGF-P3(CYC) showing the highest inhibitory effects when compared with unstructured peptides. Additionally, we show in several angiogenic in vitro assays that all the VEGF mimics inhibited endothelial cell proliferation, migration, and network formation with the conformational VEGF-P3 (CYC) being the best. The VEGF-P3(CYC) also caused a significant delay in tumor development in a transgenic model of VEGF(+/-)Neu2-5(+/-). These results indicate that the structure-based design is important for the development of this peptidomimetic and for its anti-angiogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号