首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophoretic mobilities (EPMs) of 30 Mycobacterium avium complex organisms were measured. The EPMs of 15 clinical isolates ranged from −1.9 to −5.0 μm cm V−1 s−1, and the EPMs of 15 environmental isolates ranged from −1.9 to −4.6 μm cm V−1 s−1 at pH 7.  相似文献   

2.
Because of its possible importance to the etiology of cystic fibrosis lung disease, the ion and water transport properties of tracheal epithelium were studied. Net liquid flux (J(V)) across porcine tracheal epithelium was measured in vitro using blue dextran as a volume probe. Luminal instillation of isosmotic sucrose solution (280 mM) induced a small net secretion of liquid (7.0 +/- 1.7 nl x cm(-2) x s(-1)), whereas luminal hyposmotic sucrose solutions (220 or 100 mM) induced substantial and significant (P < 0.05) liquid absorption (34.5 +/- 12 and 38.1 +/- 7.3 nl x cm(-2) x s(-1), respectively). When the luminal solution was normal (isosmotic) Krebs buffer, liquid was absorbed at 10.2 +/- 1.1 nl x cm(-2) x s(-1). Absorptive J(V) was abolished by 100 microM amiloride in the luminal solution and significantly reduced when the luminal solution was Na(+)-free Krebs solution. Absorptive J(V) was not significantly affected by 300 microM 5-nitro-2-(3-phenylpropylamino)benzoate or 100 microM diphenylamine-2-carboxylic acid, both cystic fibrosis transmembrane conductance regulator protein (CFTR) inhibitors, in the instillate but was significantly reduced by 60% when the luminal solution was Cl(-)-free Krebs solution. We conclude that water freely permeates porcine tracheal epithelium and that absorption of liquid is normally driven by active transcellular Na(+) transport and does not require the CFTR.  相似文献   

3.
AIMS: To characterize bacteria associated with turbot larvae feeding on Artemia and identify pathogens causing mortalities in larvae. METHODS AND RESULTS: To identify bacteria associated with mortalities in larval turbot rearing, bacteria were isolated from homogenates of Artemia or from several batches of well-performing or poorly performing turbot larvae. Samples were plated onto marine agar and were characterized using biochemical tests and BIOLOG GN plates. Total culturable aerobic bacteria ranged from 1.9 x 10(5) to 1.8 x 10(6) CFU per larva and >96% of bacteria identified were vibrios. Almost all bacteria were haemolytic and clustered into two phenons represented by Vibrio alginolyticus and Vibrio splendidus. The bacterial flora of Artemia was almost entirely V. alginolyticus, whereas V. splendidus biotype 1 dominated the larval turbot gut flora (69/115 isolates in seven experiments) and formed four different groups based on BIOLOG GN reactions. Of 16 isolates tested for virulence towards turbot larvae, four of the 11 V. splendidus biotype 1 isolates were lethal and all belonged to the same group of V. splendidus biotype 1 isolates. CONCLUSIONS: In a commercial turbot hatchery, the microbial flora of the larval gut was dominated by V. splendidus biotype 1. Four of the 11 V. splendidus biotype 1 isolates caused mortalities in larval turbot and all belonged to one group of the biotype 1 strains identified. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of four isolates of V. splendidus that are pathogenic for turbot larvae from three separate batches of larval turbot will allow these to be compared with avirulent isolates to define how V. splendidus causes mortalities in larval turbot.  相似文献   

4.
Forty-one isolates of moderately halophilic bacteria were isolated from fermented fish (pla-ra) in Thailand. On the basis of their phenotypic and chemotaxonomic characteristics, DNA-DNA relatedness and 16S rRNA gene sequences analyses, they were divided into six groups. The isolates in Group I to V were Gram-positive rod-shaped bacteria. They contained meso-diaminopimelic acid in the cell-wall peptidoglycan and menaquinone with seven isoprene units (MK-7). An isolate in Group VI was a Gram-negative rod-shaped bacterium. The DNA G+C contents of tested strains ranged from 36.5-63 mol%. Ten strains (Group I) were identified as Virgibacillus dokdonensis, 13 isolates (Group II) as V. halodenitrificans, 14 isolates (Group III) as V. marismortui, 1 isolate (Group IV) as Virgibacillus sp., 2 isolates (Group V) as Bacillus vietnamnensis, and 1 isolate (Group VI) as Chromohalobacter salexigens. Isolate MS3-4 in Group IV was closely related to V. carmonensis KCTC 3819(T) (95.9%). This strain contained anteiso-C(15:0) (55.8%) and anteiso-C(17:0) (17.7%) as major cellular fatty acids and had phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid as polar lipids. The DNA G+C content of MS3-4 was 38.0 mol%. The strain from Group IV is proposed as Virgibacillus siamensis sp. nov. and MS3-4(T) is the type strain (JCM 15395(T) =PCU 312(T) =TISTR 1957(T)).  相似文献   

5.
Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1.2+/-0.3 to 2.4+/-0.4 mS x cm(-2) and slower increases in equivalent short circuit current, I(SC)(Eqv) = -G(T) x V(T), from 12.7+/-3.2 to 33.1+/-6.8 microA cm(-2), and J(V) from 0.72+/-0.17 to 3.01+/-0.49 nL cm(-2) s(-1). Amiloride in the outside solution abolished I(SC)(Eqv) (-1.6+/-0.1 microA cm(-2)) while J(V) decreased to 0.50+/-0.15 nL cm(-2) x s(-1), which is significantly different from zero. Isoproterenol decreased the osmotic concentration of the transported fluid, C(osm) approximately 2 x I(SC)(Eqv)/J(V), from 351+/-72 to 227+/-28 mOsm (Ringer's solution: 252.8 mOsm). J(V) depicted a saturating function of [Na+]out in agreement with Na+ self-inhibition of ENaC. Ouabain on the inside decreased I(SC)(Eqv) from 60+/-10 to 6.1+/-1.7 microA cm(-2), and J(V) from 3.34+/-0.47 to 1.40+/-0.24 nL cm(-2) x s(-1). Short-circuited preparations exhibited a linear relationship between short-circuit current and J(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased deltaC(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.  相似文献   

6.
The human immunodeficiency virus (HIV-1) envelope glycoprotein (GP) 120 interacts with CD4 and the CCR5 coreceptor for viral entry. The V3 loop in GP120 is a crucial region for determining coreceptor usage during viral entry, and a variety of amino acid substitutions has been observed in clinical isolates. To construct an HIV-1 V3 loop library, we chose 10 amino acid positions in the V3 loop and incorporated random combinations (27,648 possibilities) of the amino acid substitutions derived from 31 R5 viruses into the V3 loop of HIV-1(JR-FL) proviral DNA. The constructed HIV-1 library contained 6.6 x 10(6) independent clones containing a set of 0-10 amino acid substitutions in the V3 loop. To address whether restricted steric alteration in the V3 loop could confer resistance to an entry inhibitor, TAK-779, we selected entry inhibitor-resistant HIV-1 by increasing the concentration of TAK-779 from 0.10 to 0.30 microM in PM1-CCR5 cells with high expression of CCR5. The selected viruses at passage 8 contained five amino acid substitutions in the V3 loop without any other mutations in GP120 and showed 15-fold resistance compared with the parental virus. These results indicated that a certain structure of the V3 loop containing amino acid substitutions derived from 31 R5 viruses can contribute to the acquisition of resistance to entry inhibitors binding to CCR5. Taken together, this type of HIV-1 V3 loop library is useful for isolating and analyzing the specific biological features of HIV-1 with respect to alterations of the V3 loop structure.  相似文献   

7.
In human airways, extracellular adenosine regulates epithelial functions supporting mucociliary clearance, an important airway defense mechanism against bacterial infection. Thus, defining the mechanisms of adenosine generation is critical for elucidating the role of this nucleoside in airway homeostasis. In this study, we identified the source of adenosine on the mucosal surface of human airway epithelia. Polarized primary cultures of human nasal or bronchial epithelial cells were assayed for transepithelial transport, cytosolic and cell surface adenosine production. Ussing chamber experiments indicated that serosal 1 microM [(3)H]adenosine was not transported to the mucosal compartment. Messenger RNA for the cytosolic AMP-specific 5'-nucleotidase (CN-I) was not detected in human bronchial epithelial cells, suggesting that mucosal adenosine did not originate from intracellular pools. In contrast, extracellular 0.1 mm ATP was rapidly dephosphorylated into adenosine on the mucosal epithelial surface. We identified two ectonucleotidases that mediated the conversion of AMP to adenosine: ecto 5'-nucleotidase (ecto 5'-NT, CD73) and alkaline phosphatase (AP). Both mucosal and serosal epithelial surfaces displayed ecto 5'-NT activity (K(m) = 14 microM, V(max) = 0.5 nmol x min(-1) x cm(-2)), whereas AP activity was restricted to the mucosal surface (K(m,)(high) = 36 microM, V(max) = 1.2 nmol x min(-1) x cm(-2); K(m,)(low) = 717 microM, V(max) = 2.8 nmol x min(-1) x cm(-2)). In bronchial cultures and tissues, ecto 5'-NT accounted for >80% of total activity toward 0.01 mm AMP, compared with <15% for 5 mm AMP. The proximal airway AP isoform was identified as nonspecific AP (NS AP) by levamisole sensitivity and mRNA expression. The two ectoenzymes presented opposite airway distributions, ecto 5'-NT and NS AP mRNA dominating in higher and lower airways, respectively. Collectively, these experiments support a major role for extracellular nucleotide catalysis and for ecto 5'-NT and NS AP in the regulation of adenosine concentrations on airway surfaces.  相似文献   

8.
An alkaline phosphatase (AP)-labelled oligonucleotide probe was developed to detect and enumerate trh(+)Vibrio parahaemolyticus in seafood. The probe was evaluated using 40 isolates of V. parahaemolyticus, 45 isolates of other vibrios and 55 non-vibrio isolates. The probe reacted specifically with V. parahaemolyticus possessing either the trh1 or trh2 variant of the trh gene and was found to be 100% specific for trh(+)V. parahaemolyticus. Using the trh probe, V. parahaemolyticus carrying trh gene was targeted in 34 seafood samples by direct plating and colony hybridization procedure. The trh(+)V. parahaemolyticus could be detected in five of 34 (14.7%) samples and the levels ranged from 5.0 x 10(2) to 3.4 x 10(3) cfu g(-1). Colonies of trh(+)V.parahaemolyticus were isolated from the five positive samples. Forty seafood samples were analysed for trh(+)V. parahaemolyticus by colony hybridization following enrichment in alkaline peptone water. 16 samples (40%) were positive for trh gene and trh(+)V. parahaemolyticus was isolated from 15 samples (37.5%). To assess the sensitivity of the trh probe, seafood homogenates spiked with known concentrations of trh-positive V. parahaemolyticus were plated and hybridized. Counts obtained using the probe were similar to those of inocula. The results suggest that the AP-labelled trh probe is useful for the detection and enumeration of trh(+)V. parahaemolyticus in seafood.  相似文献   

9.
Escherichia coli expresses an inducible flavohemoglobin possessing robust NO dioxygenase activity. At 37 degrees C, the enzyme shows a maximal turnover number (V(max)) of 670 s(-1) and K(m) values for NADH, NO, and O(2) equal to 4.8, 0.28, and approximately 100 microM, respectively. Individual reduction, ligand binding, and NO dioxygenation reactions were examined at 20 degrees C, where V(max) is approximately 94 s(-1). Reduction by NADH occurs in two steps. NADH reduces bound FAD with a rate constant of approximately 15 microM(-1) s(-1), and heme iron is reduced by FADH(2) with a rate constant of 150 s(-1). Dioxygen binds tightly to reduced flavohemoglobin, with association and dissociation rate constants equal to 38 microM(-1) s(-1) and 0.44 s(-1), respectively, and the oxygenated flavohemoglobin dioxygenates NO to form nitrate. NO also binds reversibly to reduced flavohemoglobin in competition with O(2), dissociates slowly, and inhibits NO dioxygenase activity at [NO]/[O(2)] ratios of 1:100. Replacement of the heme pocket B10 tyrosine with phenylalanine increases the O(2) dissociation rate constant approximately 80-fold and reduces NO dioxygenase activity approximately 30-fold, demonstrating the importance of the tyrosine hydroxyl for O(2) affinity and NO scavenging activity. At 37 degrees C, V(max)/K(m)(NO) is 2,400 microM(-1) s(-1), demonstrating that the enzyme is extremely efficient at converting toxic NO into nitrate under physiological conditions.  相似文献   

10.
Manganese Oxidation by Bacterial Isolates from the Indian Ridge System   总被引:1,自引:0,他引:1  
The abundance and activity of culturable manganese-oxidizing bacteria were assessed from near-bottom water samples of the tectonically active Carlsberg Ridge. Retrievable counts as colony forming units (CFU) on dilute nutrient agar medium (dilNA = 2 gm l−1 nutrient broth+2% agar) and on dilNA supplemented with 1, 2 and 3 mM MnCl2·4H2O were in the order of 106 CFU l−1. Retrievability of heterotrophs ranged from non-detectable levels (ND) to 2.82 × 106 CFU l−1. The retrievable counts on Mn amended dilNA ranged from ND to 3.21× 106, 1.47 × 106 and 1.45 × 106 CFU l−1 on 1, 2 and 3 mM, respectively. About 87% of the Mn tolerant isolates (n = 39) showed taxonomic affinities to Pseudomonas I and II sp. Two representative strains CR35 and CR48 (CR–Carlsberg Ridge) isolated on manganese-supplemented media were tested for their ability to tolerate a range of Mn amendments from 1 nM to 100 mM in terms of growth and respiration. CR35 represents 66% of the total CFU (3.04 × 106 CFU l−1), while CR48 represented only 6% of the total CFU (1.05 × 106 CFU l−1). The colonies of these two isolates were dark brown in color suggesting precipitation of Mn as oxide. Tests for the effect on growth and respiration were conducted in media simulating heterotrophic (amended with 0.01% glucose) and lithotrophic (unamended) conditions. Maximum stimulation in growth and respiration of CR35 occurred at 100 μM Mn both in unamended and amended media. At levels of Mn greater than 100 μM the counts decreased steadily. Total respiring cells of CR48 were stimulated to a maximum at 1 μM Mn in unamended medium and 1 nM in amended medium. Total cells counts for the same decreased beyond 100 μM Mn in unamended and 1 nM in amended medium. The isolates were tested for their ability to oxidize Mn ammendments from 1 μM to 10 mM Mn. At the end of a 76-day incubation period, there was evidence of manganese oxide precipitation at high Mn concentrations (≥1 mM) as a dark brown coloration on the sides of culture tubes. Highest Mn oxidation rates were observed at 10 mM Mn(II) concentration with CR35 oxidizing 27 and 25 μM Mn day−1 in unamended and amended condition, respectively. CR48 oxidized Mn at the rate of 26 μM Mn day−1 in unamended medium and 35 μM Mn day−1 in amended medium. Scanning electron microscope (SEM) observations of both isolates revealed free-living cells in clustered matrices ≈2 μm diameter. Energy dispersive spectrum of the cell matrix of CR35 cultured in 1 mM Mn detected 30% Mn, while the cell aggregates of CR48 harbored 7–10% Mn. The relatively high specific activity of these mixotrophic bacteria under relatively oligotrophic conditions suggests that they may be responsible for scavenging dissolved Mn from the Carlsberg Ridge waters and could potentially participate in oxidation.  相似文献   

11.
The effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on responses to sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), the nitroxyl anion donor Angeli's salt, and nitrergic nerve stimulation, as well as the release of NO from nitrergic nerves, were studied in the rat isolated anococcygeus muscle. YC-1 (1-100 microM) produced concentration-dependent relaxations in contracted muscles, which were partially but significantly reduced by the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 and 10 microM). At a concentration that did not affect tissue tension, YC-1 (1 microM) significantly enhanced relaxations to SNP, SNAP, and Angeli's salt but did not affect relaxations to papaverine (10 microM). Nitrergic relaxations elicited by short periods (1 Hz for 10 s, 15 V) and long periods of EFS (5 Hz for 5 min, 15 V) were also enhanced by YC-1. YC-1 (100 microM), in an l-NAME and tetrodotoxin-insensitive manner, also increased the amount of NO detected in the organ bath media after the tissue was field stimulated (5 Hz for 5 min), which may have resulted from the electrolytic degradation of YC-1, as this effect was also seen in the absence of tissue. In summary, YC-1 enhanced relaxations to donors of NO, Angeli's salt, and nitrergic nerve stimulation in the rat anococcygeus muscle; however, the enhanced release of NO by YC-1 following nitrergic nerve stimulation was not a tissue-dependent effect.  相似文献   

12.
Flavocytochrome c-sulfide dehydrogenases (FCSDs) are complexes of a flavoprotein with a c-type cytochrome performing hydrogen sulfide-dependent cytochrome c reduction in vitro. The amino acid sequence analysis revealed that the phylogenetic relationship of different flavoproteins reflected the relationship of sulfur-oxidizing bacteria. The flavoprotein SoxF of Paracoccus pantotrophus is 29-67% identical to the flavoprotein subunit of FCSD of phototrophic sulfur-oxidizing bacteria. Purification of SoxF yielded a homogeneous emerald-green monomeric protein of 42 797 Da. SoxF catalyzed sulfide-dependent horse heart cytochrome c reduction at the optimum pH of 6.0 with a k(cat) of 3.9 s(-1), a K(m) of 2.3 microM for sulfide, and a K(m) of 116 microM for cytochrome c, as determined by nonlinear regression analysis. The yield of 1.9 mol of cytochrome c reduced per mole of sulfide suggests sulfur or polysulfide as the product. Sulfide dehydrogenase activity of SoxF was inhibited by sulfur (K(i) = 1.3 microM) and inactivated by sulfite. Cyanide (1 mM) inhibited SoxF activity at pH 6.0 by 25% and at pH 8.0 by 92%. Redox titrations in the infrared spectral range from 1800 to 1200 cm(-1) and in the visible spectral range from 400 to 700 nm both yielded a midpoint potential for SoxF of -555 +/- 10 mV versus Ag/AgCl at pH 7.5 and -440 +/- 20 mV versus Ag/AgCl at pH 6.0 (-232 mV versus SHE') and a transfer of 1.9 electrons. Electrochemically induced FTIR difference spectra of SoxF as compared to those of free flavin in solution suggested a strong cofactor interaction with the apoprotein. Furthermore, an activation/variation of SoxF during the redox cycles is observed. This is the first report of a monomeric flavoprotein with sulfide dehydrogenase activity.  相似文献   

13.
Serpersu and Tsong (Sepersu, E. H., and Tsong, T. Y. (1983) J. Membr. Biol. 74, 191-201; (1984) J. Biol. Chem. 259, 7155-7162) reported activation of a K+ pumping mode of (Na,K)-ATPase by an oscillating electric field (20 V/cm, 1.0 kHz). Their attempts to activate Na+ pumping at the same frequency were unsuccessful. We report here activation of a Na+ pumping mode with an oscillating electric field of the same strength as used previously (20 V/cm) but at a much higher frequency (1.0 MHz). At 3.5 degrees C and the optimal amplitude and frequency, the field-induced, ouabain-sensitive (0.2 mM ouabain incubated for 30 min) Rb+ influx ranged between 10 and 20 amol/red blood cell/h, and the corresponding Na+ efflux ranged between 15 and 30 amol/red blood cell/h, varying with the source of the erythrocytes. No Rb+ efflux nor Na+ influx was stimulated by the applied field in the frequency range 1 Hz to 10 MHz. These results indicate that only those transport modes that require ATP splitting under the physiological condition were affected by the applied electric fields, although the field-stimulated Rb+ influx and Na+ efflux did not depend on the cellular ATP concentration in the range 5 to 800 microM. Computer simulation of a four-state enzyme electroconformationally coupled to an alternating electric field (Tsong, T. Y., and Astumian, R. D. (1986) Bioelectrochem. Bioenerg. 15, 457-476; Tsong, T. Y. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 83-106) reproduced the main features of the above results.  相似文献   

14.
Squid giant axons recover from acid loads by activating a Na(+)-driven Cl-HCO(3) exchanger. We internally dialyzed axons to an intracellular pH (pH( i )) of 6.7, halted dialysis and monitored the pH(i) recovery (increase) in the presence of ATP or other nucleotides, using cyanide to block oxidative phosphorylation. We computed the equivalent acid-extrusion rate (J(H)) from the rate of pH(i) increase and intracellular buffering power. In experimental series 1, we used dialysis to vary [ATP](i), finding that Michaelis-Menten kinetics describes J (H) vs. [ATP](i), with an apparent V(max) of 15.6 pmole cm(-2 )s(-1) and K (m) of 124 microM. In series 2, we examined ATP gamma S, AMP-PNP, AMP-PCP, AMP-CPP, GMP-PNP, ADP, ADP beta S and GDP beta S to determine if any, by themselves, could support transport. Only ATP gamma S (8 mM) supported acid extrusion; ATP gamma S also supported the HCO (3)(-) -dependent (36)Cl efflux expected of a Na(+)-driven Cl-HCO(3) exchanger. Finally, in series 3, we asked whether any nucleotide could alter J (H) in the presence of a background [ATP](i) of approximately 230 microM (control J (H) = 11.7 pmol cm(-2 )s(-1)). We found J (H) was decreased modestly by 8 mM AMP-PNP (J (H) = 8.0 pmol cm(-2 )s(-1)) but increased modestly by 1 mM ADP beta S (J (H) = 16.0 pmol cm(-2 )s(-1)). We suggest that ATP gamma S leads to stable phosphorylation of the transporter or an essential activator.  相似文献   

15.
The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.  相似文献   

16.
The DNA of the nonoccluded baculovirus (Hz-1V) obtained from the IMC-Hz-1 cell line was characterized by physicochemical and restriction endonuclease techniques. Hz-1V DNA isolated from purified virus had buoyant densities of 1.58 and 1.54 g/ml in CsCl-ethidium bromide density gradients, which corresponded to supercoiled and to relaxed circular and linear DNA, respectively. Neutral CsCl equilibrium centrifugation indicated that the Hz-1V DNA had a buoyant density of 1.7024 g/ml, which corresponded to a guanine-plus-cytosine (G+C) content of 43%. Thermal denaturation indicated a high G+C domain(s) in the Hz-1V genomic DNA. The domain(s), which included about 11% of the total genomic DNA, exhibited a T(m) of 97 degrees C. The remaining portion (89%) of the DNA had a T(m) of 86.5 degrees C. The T(m)s corresponded to G+C contents of 42 and 67%, respectively. The mean genetic complexity of Hz-1V DNA determined by DNA reassociation kinetic analysis was found to be 152 x 10(6). A possible rapidly reassociating component comprising approximately 13% of the genome was observed. The mean molecular weights from restriction endonuclease digests were 159 x 10(6) for both HindIII and EcoRI. Genomic heterogeneity was found in both the wild-type Hz-1V stock and in two plaque isolates. Of 12 single-plaque isolates, 3 basic restriction endonuclease DNA fragment patterns were observed. The molecular size estimates from electron microscopic contour lengths of uncloned viral DNA ranged from 70 to 158 megadaltons, and the mode was the 130- to 140-megadalton class.  相似文献   

17.
Parikh SL  Xiao G  Tonge PJ 《Biochemistry》2000,39(26):7645-7650
Structural and genetic studies indicate that the antibacterial compound triclosan, an additive in many personal care products, is an inhibitor of EnvM, the enoyl reductase from Escherichia coli. Here we show that triclosan specifically inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis and a target for the antitubercular drug isoniazid. Binding of triclosan to wild-type InhA is uncompetitive with respect to both NADH and trans-2-dodecenoyl-CoA, with K(i)' values of 0.22+/-0.02 and 0.21+/-0.01 microM, respectively. Replacement of Y158, the catalytic tyrosine residue, with Phe, reduces the affinity of triclosan for the enzyme and results in noncompetitive inhibition, with K(i) and K(i)' values of 36+/-5 and 47+/-5 microM, respectively. Consequently, the Y158 hydroxyl group is important for triclosan binding, suggesting that triclosan binds in similar ways to both InhA and EnvM. In addition, the M161V and A124V InhA mutants, which result in resistance of Mycobacterium smegmatis to triclosan, show significantly reduced affinity for triclosan. Inhibition of M161V is noncompetitive with K(i)' = 4.3+/-0.5 microM and K(i) = 4.4+/-0.9 microM, while inhibition of A124V is uncompetitive with K(i)' = 0. 81 +/- 0.11 microM. These data support the hypothesis that the mycobacterial enoyl reductases are targets for triclosan. The M161V and A124V enzymes are also much less sensitive to isoniazid compared to the wild-type enzyme, indicating that triclosan can stimulate the emergence of isoniazid-resistant enoyl reductases. In contrast, I47T and I21V, two InhA mutations that occur in isoniazid-resistant clinical isolates of M. tuberculosis, show unimpaired inhibition by triclosan, with uncompetitive inhibition constants (K(i)') of 0.18+/-0.01 and 0.12+/- 0.01 microM, respectively. The latter result indicates that InhA inhibitors targeted at the enoyl substrate binding site may be effective against existing isoniazid-resistant strains of M. tuberculosis.  相似文献   

18.
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.  相似文献   

19.
Unilamellar phosphatidylcholine vesicles, harboring the ionophore, A23187, in the bilayer and the water-soluble chelating agent, nitrilotriacetate, in the vesicle interior, rapidly sequester and concentrate Cd2+ from dilute aqueous solution. Metal-sorbing vesicle permeabilities for cadmium ion at 5 ppm (42.8 microM) ranged from 8.09 x 10(-7) to 1.27 x 10(-4) cm/s for surface A23187 concentrations of 0.22-2.27 pmol/cm2 (which correspond to lipid:carrier molar ratios of 2000:1 to 200:1) and pH's from 5.5 to 8.5. The Cd2+ permeability shows linear variation with carrier concentration under the conditions studied. As pH is decreased, an increasing fraction of the A23187 becomes protonated, and the permeability exhibits a positive linear relationship with a function related to that for the fraction of unprotonated carrier. These noncovalently assembled, metal-sorbing vesicles exhibit shelf lives of several months and remain stable throughout typical metal sorption studies.  相似文献   

20.
We examined the effects of reactive oxygen-nitrogen intermediates on chloride (Cl-) currents across murine tracheal epithelial (MTE) cells isolated from CD-1 mice. MTE cells were cultured on permeable supports until they formed water-tight monolayers with transepithelial resistances (Rt)>500 Omega/cm2 and then were mounted in Ussing chambers. Baseline short-circuit current (ISC) values, prior to and following the addition of 10 microM amiloride (an inhibitor of sodium-transport pathways) into the apical side, were 65 +/- 1.9 microA/cm2 and 7.6 +/- 0.51 microA/cm2, respectively (X +/- 1 SE, n=32). The addition of 3-morpholinosydnominine (SIN-1, 1 mM), which generates both superoxide and nitric oxide anions, to amiloride-treated monolayers resulted in a transient increase of ISC to a peak value of 35 +/- 1.3 microA/cm2 (X +/- SE, n=14) within the next 30-60 min. After this, the ISC decreased gradually and returned to its pre-SIN-1 value. These changes were blocked by glibenclamide (200 microM), an inhibitor of cystic fibrosis transmembrane regulator, or reduced by glutathione (GSH, 5 mM), a scavenger of peroxynitrite. Forskolin (10 microM) augmented the SIN-1 effect when added at the peak of the SIN-1 response but not when ISC had returned to its baseline value. Perfusion of MTE cells with SIN-1 also increased whole cell Cl- currents 4-fold and the open probability of CFTR-type single-channel currents from 0.041 to 0.92 in a transient fashion. Decomposed SIN-1, but not pure SIN-1c (the stable decomposition product of SIN-1), also increased ISC with an EC50 of 5 microM. Electrospray mass spectroscopy revealed several unique and uncharacterized compounds formed during the decomposition of SIN-1 as well as the reaction of SIN-1c with peroxynitrite. Formation of these compounds was inhibited by GSH. We conclude that compounds formed by the reaction of peroxynitrite with by-products of SIN-1, rather than reactive oxygen-nitrogen species per se, were responsible for the modulation of Cl- secretion across primary cultures of MTE cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号