首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although cerebral autoregulation (CA) appears well maintained during mild to moderate intensity dynamic exercise in young subjects, it is presently unclear how aging influences the regulation of cerebral blood flow during physical activity. Therefore, to address this question, middle cerebral artery blood velocity (MCAV), mean arterial pressure (MAP), and the partial pressure of arterial carbon dioxide (Pa(CO(2))) were assessed at rest and during steady-state cycling at 30% and 50% heart rate reserve (HRR) in 9 young (24 +/- 3 yr; mean +/- SD) and 10 older middle-aged (57 +/- 7 yr) subjects. Transfer function analysis between changes in MAP and mean MCAV (MCAV(mean)) in the low-frequency (LF) range were used to assess dynamic CA. No age-group differences were found in Pa(CO(2)) at rest or during cycling. Exercise-induced increases in MAP were greater in older subjects, while changes in MCAV(mean) were similar between groups. The cerebral vascular conductance index (MCAV(mean)/MAP) was not different at rest (young 0.66 +/- 0.04 cm x s(-1) x mmHg(-1) vs. older 0.67 +/- 0.03 cm x s(-1) x mmHg(-1); mean +/- SE) or during 30% HRR cycling between groups but was reduced in older subjects during 50% HRR cycling (young 0.67 +/- 0.03 cm x s(-1) x mmHg(-1) vs. older 0.56 +/- 0.02 cm x s(-1) x mmHg(-1); P < 0.05). LF transfer function gain and phase between MAP and MCAV(mean) was not different between groups at rest (LF gain: young 0.95 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.88 +/- 0.06 cm x s(-1) x mmHg(-1); P > 0.05) or during exercise (LF gain: young 0.80 +/- 0.05 cm x s(-1) x mmHg(-1) vs. older 0.72 +/- 0.07 cm x s(-1) x mmHg(-1) at 50% HRR; P > 0.05). We conclude that despite greater increases in MAP, the regulation of MCAV(mean) is well maintained during dynamic exercise in healthy older middle-aged subjects.  相似文献   

2.
Transcranial Doppler ultrasound-determined middle (MCA) and anterior (ACA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes (PI) were measured during "no-load" [21, 60, and 102 revolutions/min (rpm)] and loaded cycling (30, 60, and 149 W) at approximately 60 rpm. At rest Vmean MCA was 51 (36-55) cm/s (median and range; n = 10) and Vmean ACA was 41 (36-49) cm/s (n = 7; P < 0.05). With no load on the cycle Vmean MCA increased 4 (2-36), 10 (0-47), and 27% (4-58) (P < 0.05) at the three pedaling frequencies, respectively; arterial PCO2 (PaCO2) remained constant. During loaded cycling the increases were 19 (6-42), 25 (2-45), and 32% (12-67) (P < 0.01), respectively, with only a minimal change in PaCO2. No significant changes were observed in Vmean ACA. Changes in Vmean MCA were similar to those recorded by the initial slope index (ISI) of the 133Xe clearance method (n = 11), which in turn were smaller than increases recorded by the fast-compartment flow. PI ACA followed PI MCA during no-load as well as loaded exercise and increased with work rate, perhaps reflecting an increase in pulse pressure from 56 (48-63) mmHg at rest to 109 (88-123) mmHg at 149 W (P < 0.01). Data demonstrate a graded increase in regional cerebral perfusion during dynamic exercise corresponding to the MCA territory.  相似文献   

3.
4.
Exercise challenges cerebral autoregulation (CA) by a large increase in pulse pressure (PP) that may make systolic pressure exceed what is normally considered the upper range of CA. This study examined the relationship between systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) and systolic (V(s)), diastolic (V(d)). and mean (V(m)) middle cerebral artery (MCA) blood flow velocity during mild, moderate, and heavy cycling exercise. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis. PP increased by 37% and 57% during moderate and heavy exercise, respectively (P < 0.05), and the pulsatility of MCA V increased markedly. Thus exercise increased MCA V(m) and V(s) (P < 0.05) but tended to decrease MCA V(d) (P = 0.06). However, the normalized low-frequency transfer function gain between MAP and MCA V(m) and between SBP and MCA V(s) remained unchanged from rest to exercise, whereas that between DBP and MCA V(d) increased from rest to heavy exercise (P < 0.05). These findings suggest that during exercise, CA is challenged by a rapid decrease rather than by a rapid increase in blood pressure. However, dynamic CA remains able to modulate blood flow around the exercise-induced increase in MCA V(m), even during high-intensity exercise.  相似文献   

5.
Changes in middle cerebral artery flow velocity (Vmean), measured by transcranial Doppler ultrasound, were used to determine whether increases in mean arterial pressure (MAP) or brain activation enhance cerebral perfusion during exercise. We also evaluated the role of "central command," mechanoreceptors, and/or muscle "metaboreceptors" on cerebral perfusion. Ten healthy subjects performed two levels of dynamic exercise corresponding to a heart rate of 110 (range 89-134) and 148 (129-170) beats/min, respectively, and exhaustive one-legged static knee extension. Measurements were continued during 2-2.5 min of muscle ischemia. MAP increased similarly during static [114 (102-133) mmHg] and heavy dynamic exercise [121 (104-136) mmHg] and increased during muscle ischemia after dynamic exercise. During heavy dynamic exercise, Vmean increased 24% (10-47%; P less than 0.01) over approximately 3 min despite constant arterial carbon dioxide tension. In contrast, static exercise with a higher rate of perceived exertion [18 (13-20) vs. 15 (12-18) units; P less than 0.01] was associated with no significant change in Vmean. Muscle ischemia after exercise was not associated with an elevation in Vmean, and it did not provoke an increase in Vmean after static exercise. Changes in Vmean during exercise were similar to those recorded with the initial slope index of the 133Xe clearance method. The data show that middle cerebral artery mean flow velocity reflects changes in cerebral perfusion during exercise. Furthermore, they support the hypothesis that cerebral perfusion during exercise reflects an increase in brain activation that is independent of MAP, central command, and muscle metaboreceptors but is likely to depend on influence of mechanoreceptors.  相似文献   

6.
7.
This study examined the consistency between three indexes of cerebral blood flow (CBF) obtained by using transcranial Doppler ultrasound in eight human volunteers. Each subject undertook three sessions of graded exercise, consisting of 6 min of rest, 6 min at 20% of maximal oxygen uptake (VO2 max), 6 min at 40% VO2 max, and 6 min of recovery. Values were obtained every 10 ms for the velocity associated with the maximal frequency of the Doppler shift (VP), the intensity-weighted mean velocity (VIWM), and total signal power (P). Beat-by-beat averages for three indexes (P, IWM, provided significantly different results for the percent changes in CBF with exercise. At 20% of VO2 max, P and IWM showed significant (P < 0.05) increases of 8 and 6%, respectively, whereas showed a nonsignificant increase of 3%. At 40% of VO2 max, P and IWM showed significant (P < 0.05) increases of 14 and 8%, respectively, whereas showed a nonsignificant increase of 4%. Our results suggest that the increase in CBF with exercise that has been reported with transcranial Doppler ultrasound needs to be treated with caution, as much of the response could arise as an artifact from the increase in amplitude and frequency of the arterial pressure waveform.  相似文献   

8.
9.
The purpose of the study was to examine the effect of 1) passive (assisted pedaling), 2) active (loadless pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), skin blood flow (SkBF), and sweating during recovery after 15 min of dynamic exercise. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, SkBF, and sweating during exercise recovery. Six male subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 15 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (T(sk)), esophageal temperature (T(es)), SkBF, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, and 15 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active and passive recovery modes, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining CO, SV, MAP, CVC, and sweat rate above inactive recovery. Sweat rate was different among all modes after 8 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the passive and inactive modes (P < 0.05). No differences in either T(es) or T(sk) were observed among conditions. Given that MAP was higher during passive and active recovery modes than during inactive recovery suggests differences in CVC may be due to differences in baroreceptor unloading and not factors attributed to central command. However, differences in sweat rate may be influenced by factors such as central command and mechanoreceptor stimulation.  相似文献   

10.
Lifting of a heavy weight may lead to "blackout" and occasionally also to cerebral hemorrhage, indicating pronounced consequences for the blood flow through the brain. We hypothesized that especially strenuous respiratory straining (a Valsalva-like maneuver) associated with intense static exercise would lead to a precipitous rise in mean arterial and central venous pressures and, in turn, influence the middle cerebral artery blood velocity (MCA V(mean)) as a noninvasive indicator of changes in cerebral blood flow. In 10 healthy subjects, MCA V(mean) was evaluated in response to maximal static two-legged exercise performed either with a concomitantly performed Valsalva maneuver or with continued ventilation and also during a Valsalva maneuver without associated exercise (n = 6). During static two-legged exercise, the largest rise for mean arterial pressure and MCA V(mean) was established at the onset of exercise performed with a Valsalva-like maneuver (by 42 +/- 5 mmHg and 31 +/- 3% vs. 22 +/- 6 mmHg and 25 +/- 6% with continued ventilation; P < 0.05). Profound reductions in MCA V(mean) were observed both after exercise with continued ventilation (-29 +/- 4% together with a reduction in the arterial CO(2) tension by -5 +/- 1 Torr) and during the maintained Valsalva maneuver (-21 +/- 3% together with an elevation in central venous pressure to 40 +/- 7 mmHg). Responses to performance of the Valsalva maneuver with and without exercise were similar, reflecting the deterministic importance of the Valsalva maneuver for the central and cerebral hemodynamic response to intense static exercise. Continued ventilation during intense static exercise may limit the initial rise in arterial pressure and may in turn reduce the risk of hemorrhage. On the other hand, blackout during and after intense static exercise may reflect a reduction in cerebral blood flow due to expiratory straining and/or hyperventilation.  相似文献   

11.
Rådegran, G. Ultrasound Dopplerestimates of femoral artery blood flow during dynamic knee extensorexercise in humans. J. Appl. Physiol.83(4): 1383-1388, 1997.Ultrasound Doppler has been used tomeasure arterial inflow to a human limb during intermittent staticcontractions. The technique, however, has neither been thoroughlyvalidated nor used during dynamic exercise. In this study, the inherentproblems of the technique have been addressed, and the accuracy wasimproved by storing the velocity tracings continuously and calculatingthe flow in relation to the muscle contraction-relaxation phases. Thefemoral arterial diameter measurements were reproducible with a meancoefficient of variation within the subjects of 1.2 ± 0.2%. Thediameter was the same whether the probe was fixed or repositioned atrest (10.8 ± 0.2 mm) or measured during dynamic exercise. The bloodvelocity was sampled over the width of the diameter and the parabolicvelocity profile, since sampling in the center resulted in anoverestimation by 22.6 ± 9.1% (P < 0.02). The femoral arterial Doppler blood flow increased linearly(r = 0.997, P < 0.001) with increasing load [Doppler blood flow = 0.080 · load (W) + 1.446 l/min] and was correlated positively with simultaneousthermodilution venous outflow measurements(r = 0.996, P < 0.001). The two techniques werelinearly related (Doppler = thermodilution · 0.985 + 0.071 l/min; r = 0.996, P < 0.001), with a coefficient ofvariation of ~6% for both methods.

  相似文献   

12.
IntroductionCerebral blood flow and thermal perception during physical exercise under hyperthermia conditions in females are poorly understood. Because sex differences exist for blood pressure control, resting middle cerebral artery velocity (MCAVmean), and pain, we tested the hypothesis that females would have greater reductions in MCAvmean and increased thermal perceptual strain during exercise hyperthermia compared to males.MethodsTwenty-two healthy active males and females completed 60 min of matched exercise metabolic heat production in a 1) control cool (24.0 ± 0.0 °C; 14.4 ± 3.4% Rh) and 2) hot (42.3 ± 0.3 °C; 28.4 ± 5.2% Rh) conditions in random order, separated by at least 3 days while MCAvmean, thermal comfort, and preference was obtained during the exercise.ResultsCompared to 36 °C mean body temperature (Mbt), as hyperthermia increased to 39 °C Mbt, females had a greater reduction in absolute (MCAvmean), and relative change (%Δ MCAvmean) and conductance (%Δ MCAvmean conductance) in MCAVmean compared to males (Interaction: Temperature x Sex, P ≤ 0.002). During exercise in cool conditions, absolute and conductance MCAvmean was maintained from rest through exercise; however, females had greater MCAVmean compared to males (Main effect: Sex, P < 0.0008). We also found disparities in females' perceptual thermal comfort and thermal preference. These differences may be associated with a greater reduction in partial pressure of end-tidal CO2, and different cardiovascular and blood pressure control to exercise under hyperthermia.ConclusionsIn summary, females exercise cerebral blood flow velocity is reduced to a greater extent (25% vs 15%) and the initial reduction occurs at lower hyperthermia mean body temperatures (~38 °C vs ~39 °C) and are under greater thermal perceptual strain compared to males.  相似文献   

13.
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (~1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.  相似文献   

14.
We sought to determine the relative contributions of cessation of skeletal muscle pumping and withdrawal of central command to the rapid decrease in arterial pressure during recovery from exercise. Twelve healthy volunteers underwent three exercise sessions, each consisting of a warm-up, 3 min of cycling at 60% of maximal heart rate, and 5 min of one of the following recovery modes: seated (inactive), loadless pedaling (active), and passive cycling. Mean arterial pressure (MAP), cardiac output, thoracic impedance, and heart rate were measured. When measured 15 s after exercise, MAP decreased less (P < 0.05) during the active (-3 +/- 1 mmHg) and passive (-6 +/- 1 mmHg) recovery modes than during inactive (-18 +/- 2 mmHg) recovery. These differences in MAP persisted for the first 4 min of recovery from exercise. Significant maintenance of central blood volume (thoracic impedance), stroke volume, and cardiac output paralleled the maintenance of MAP during active and passive conditions during 5 min of recovery. These data indicate that engaging the skeletal muscle pump by loadless or passive pedaling helps maintain MAP during recovery from submaximal exercise. The lack of differences between loadless and passive pedaling suggests that cessation of central command is not as important.  相似文献   

15.
Arterial pH, PCO2, standard bicarbonate, lactate, and ventilation were measured with a high sampling density during rest, exercise, and recovery in normal subjects performing upright cycle ergometer exercise. Three 6-min constant-work exercise tests (moderate, heavy, and very heavy) were performed by each subject. We found a small respiratory acidosis during the moderate-intensity exercise and an early respiratory acidosis followed by a metabolic acidosis for the heavy- and very-heavy-intensity exercise. During recovery, arterial pH rapidly returned to the preexercise value for the moderate-intensity work. However, arterial pH decreased further during the first 2 min of recovery for the heavy- and very-heavy-intensity work, before a slower return toward the resting values. We conclude that arterial acidosis is the consistent arterial pH reaction for moderate-, heavy-, and very-heavy-intensity cycle ergometer exercise in humans and that this acidosis is blunted but not eliminated by the ventilatory response. During recovery, the return to resting arterial pH and PCO2 and standard bicarbonate appears to be determined by the rate of lactate decline.  相似文献   

16.
Cerebral blood flow (CBF) in humans was measured at rest and during dynamic exercise on a cycle ergometer corresponding to 56% (range 27-85) of maximal O2 uptake (VO2max). Exercise bouts were performed by 16 male and female subjects, lasted 15 min each, and were carried out in a semisupine position. CBF (133Xe clearance) was expressed as the initial slope index (ISI) and as the first compartment flow (F1). CBF at rest [ISI, 58 (range 45-73); F1, 76 (range 55-98) ml.100 g-1.min-1] increased during exercise [ISI to 79 (57-94) and F1 to 118 (75-164) ml.100 g-1.min-1, P less than 0.01]. CBF did not differ significantly between work loads from 32 (24-33) to 86% (74-96) of VO2max (n = 10). During exercise, mean arterial pressure increased from 84 (60-100) to 101 (78-124) Torr (P less than 0.01) and PCO2 remained unchanged [5.1 (4.6-5.6) vs. 5.4 (4.4-6.3) kPa, n = 6]. These results demonstrate a median increase of 31% (0-87) in CBF by ISI and a median increase of 58% (0-133) in CBF by F1 during dynamic exercise in humans.  相似文献   

17.
The intra- and extracerebral Doppler artery blood velocity responses to a 10-mmHg abrupt blood pressure (BP) decrease in ten healthy men were studied. This decrease was obtained using two cuffs placed over both thighs. First, cuffs were inflated to pressures greater than the arterial BP for 5 min. Next, they were deflated to 60 mmHg in order to prevent venous return from the legs. We obtained a decrease in mean arterial BP of from 101 (10) to 90 (10) mmHg [mean (SD), P < 0.01] without modifications in the heart rate [HR, 88 (14) beats min−1]. Middle cerebral artery mean blood velocity (MCAmv) decreased immediately from 50 (10) to 42 (12) cm s−1 (P < 0.05). Simultaneously, temporal superficial artery mean blood velocity (TSAmv) decreased from 11 (3) to 7 (2) cm s−1 (P < 0.05) and common carotid artery blood flow (CCAbf ) decreased from 305 (23) to 233 (33) ml min−1 (P < 0.05). After 5 s, MCAmv and CCAbf returned to baseline values, whereas TSAmv [8 (2) cm s−1], mean arterial BP [86 (10) mmHg] remained low and HR increased [92 (12) beats min−1]. TSAmv, BP and HR returned to baseline values in 1 min. These data confirm that cerebral blood flow (CBF) is very rapidly regulated but that blood flow in extracranial territories is not and that it follows the arterial BP changes. Accepted: 8 April 1997  相似文献   

18.
We examined the effects of dynamic one-legged knee extension exercise on mean blood velocity (MBV) and muscle interstitial metabolite concentrations in healthy young subjects (n = 7). Femoral MBV (Doppler), mean arterial pressure (MAP) and muscle interstitial metabolite (adenosine, lactate, phosphate, K(+), pH, and H(+); by microdialysis) concentrations were measured during 5 min of exercise at 30 and 60% of maximal work capacity (W(max)). MAP increased (P < 0.05) to a similar extent during the two exercise bouts, whereas the increase in MBV was greater (P < 0.05) during exercise at 60% (77.00 +/- 6.77 cm/s) compared with 30% W(max) (43.71 +/- 3.71 cm/s). The increase in interstitial adenosine from rest to exercise was greater (P < 0.05) during the 60% (0.80 +/- 0.10 microM) compared with the 30% W(max) bout (0.57 +/- 0.10 microM). During exercise at 60% W(max), interstitial K(+) rose at a greater rate than during exercise at 30% W(max) (P < 0.05). However, pH increased (H(+) decreased) at similar rates for the two exercise intensities. During exercise, interstitial lactate and phosphate increased (P < 0.05) with no difference observed between the two intensities. After 5 min of recovery, MBV decreased to baseline levels after exercise at 30% W(max) (4.12 +/- 1.10 cm/s), whereas MBV remained above baseline levels after exercise at 60% W(max) (Delta19.46 +/- 2.61 cm/s; P < 0.05). MAP and interstitial adenosine, K(+), pH, and H(+) returned toward baseline levels. However, interstitial lactate and phosphate continued to increase during the recovery period. Thus an increase in exercise intensity resulted in concomitant changes in MBV and muscle interstitial adenosine and K(+), whereas similar changes were not observed for MAP or muscle interstitial pH, lactate, or phosphate. These data suggest that K(+) and/or adenosine may play an active role in the regulation of skeletal muscle blood flow during exercise.  相似文献   

19.
The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C; control) or when severe hyperthermia had developed (core temperature = 39.5 degrees C; hyperthermia). The gCBF was similar after 15 min in the two trials, and it remained stable throughout control. In contrast, during hyperthermia gCBF decreased by 18% and was therefore lower in hyperthermia compared with control at the end of exercise (43 +/- 4 vs. 51 +/- 4 ml. 100 g(-1). min(-1); P < 0.05). Concomitant with the reduction in gCBF, there was a proportionally larger increase in the arteriovenous differences for oxygen and glucose, and the cerebral metabolic rate was therefore higher at the end of the hyperthermic trial compared with control. The hyperthermia-induced lowering of gCBF did not alter cerebral lactate release. The hyperthermia-induced reduction in exercise cerebral blood flow seems to relate to a concomitant 18% lowering of arterial carbon dioxide tension, whereas the higher cerebral metabolic rate of oxygen may be ascribed to a Q(10) (temperature) effect and/or the level of cerebral neuronal activity associated with increased exertion.  相似文献   

20.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号