首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.  相似文献   

3.
Pungency in pepper (Capsicum annuum L.) has unique characteristics due to the alkaloid compound group, capsaicinoids, which includes capsaicin. Although capsaicinoids have been proved to have pharmacological and physiological effects on human health, the application of capsaicinoids has been limited because of their pungency. Capsinoids found in non-pungent peppers share closely related structures with capsaicinoids and show similar biological effects. Previous studies demonstrated that mutations in the p-AMT gene were related to the production of capsinoids; however, the pathway of capsinoid synthesis has not yet been fully elucidated. In this study, we performed genetic analysis to determine the mechanism of capsinoid synthesis using a F6 recombinant inbred line population. In this population, the presence/absence of capsinoids co-segregated with the genotype of the Pun1 locus, without exception. In addition, we screened the patterns of capsinoid synthesis and the correlation between the Pun1 locus and capsinoid synthesis in p-AMT mutant accessions. In Capsicum germplasms, we selected amino-acid-substituted mutants in the PLP binding domain of the p-AMT gene. Capsinoids were not synthesized with the recessive pun1 gene, regardless of the p-AMT genotype, and no relationship was found between p-AMT mutant type and capsinoid content. We concluded that the Pun1 gene, which is responsible for capsaicinoid synthesis, also controls capsinoid synthesis.  相似文献   

4.

The placental tissue of the highly pungent chilli cultivar, Capsicum chinense Jacq. cv. ‘Umorok’, is used as explants for callus induction. Callus cultures were subcultured after every 32 days and growth curves for a period of six consecutive growth cycles were studied till a stable capsaicinoids producing callus cultures were obtained. The capsaicinoids content in placental tissue explants decreased gradually during the first 2 months of culture as the explants dedifferentiated to form friable callus while the biomass and capsaicinoid content did not show much change in the subsequent growth cycles. The maximum callus biomass of 7.8 g freshweight (FW) or 0.56 g dry weight (DW) per culture were obtained on the 24th day of every growth cycle and the maximum average capsaicinoids content (1.6 mg g?1 FW capsaicin and 0.78 mg g?1 FW dihydrocapsaicin) were obtained on the 20th day of every growth cycle. To investigate the underlying dynamics for capsaicinoid biosynthesis during callus formation, comparative gene expression analysis of the genes involved in capsaicinoid biosynthesis pathway were also studied by qRT-PCR analysis. When compared with placental tissue, all the studied genes showed reduced expression during callus formation, especially putative aminotransferase (pAMT) and pungent gene 1 (Pun1), which were extensively down regulated from the 3rd month onwards in the callus cultures. Therefore, the present study revealed that the down-regulated expression of mainly two putative genes in capsaicinoid biosynthetic pathway (pAMT and Pun1) resulted in lower accumulation of capsaicinoids in callus cultures compared to placental tissues of fruits.

  相似文献   

5.
Molecular mapping of the C locus for presence of pungency in Capsicum.   总被引:5,自引:0,他引:5  
Pungency owing to the presence of capsaicinoids is a unique character of pepper (Capsicum spp.). Capsaicinoids are produced in the placenta and it has long been known that a single dominant gene, C, is required for pungent genotypes to produce capsaicinoids. We mapped C to pepper chromosome 2 in a cross between a pungent Capsicum frutescens wild accession and a non-pungent Capsicum annuum bell pepper. This position confirmed results from earlier studies. The RFLP marker TG 205 cosegregated with C and two additional RFLP markers were also located within 1 cM. The recessive allele at the C locus is used in breeding programs around the world focused on very diverse germplasm, hence any of these tightly linked markers may be of value as potential sources of useful markers for marker-assisted selection. To demonstrate this point, we developed a PCR-based CAPS (cleaved amplified polymorphic sequence) marker linked to C using the sequence of the Capsicum fibrillin gene located 0.4 cM from C. The use of molecular markers for high-throughput screening for the c allele in pepper breeding programs is discussed.  相似文献   

6.
7.
8.
Pungency in peppers is due to the presence of capsaicinoid molecules, which are only produced in Capsicum species. The major gene Pun1 is required for the production of capsaicinoids. Three distinct mutant alleles of Pun1 have been found in three cultivated Capsicum species, one of which has been widely utilized by breeders. Although these mutations have been previously identified, a robust collection of molecular markers for the set of alleles is not available. This has been hindered by the existence of at least one paralogous locus that tends to amplify with Pun1. We present a suite of markers that can differentiate the four Pun1 alleles and test them on a diverse panel of pepper lines and in an F2 population segregating for pungency. These markers will be useful for pepper breeding, germplasm characterization, and seed purity testing.  相似文献   

9.
Capsicum species produce fruits that synthesize and accumulate unique hot compounds known as capsaicinoids in placental tissues. The capsaicinoid biosynthetic pathway has been established, but the enzymes and genes participating in this process have not been extensively studied or characterized. Capsaicinoids are synthesized through the convergence of two biosynthetic pathways: the phenylpropanoid and the branched-chain fatty acid pathways, which provide the precursors phenylalanine, and valine or leucine, respectively. Capsaicinoid biosynthesis and accumulation is a genetically determined trait in chili pepper fruits as different cultivars or genotypes exhibit differences in pungency; furthermore, this characteristic is also developmentally and environmentally regulated. The establishment of cDNA libraries and comparative gene expression studies in pungent and non-pungent chili pepper fruits has identified candidate genes possibly involved in capsaicinoid biosynthesis. Genetic and molecular approaches have also contributed to the knowledge of this biosynthetic pathway; however, more studies are necessary for a better understanding of the regulatory process that accounts for different accumulation levels of capsaicinoids in chili pepper fruits.  相似文献   

10.
Capsaicinoids are acid amides of C9 - C11 branched-chain fatty acids and vanillylamine. These compounds are responsible for the pungency of the Capsicum species and of cultivars regarded as hot peppers. Moreover, it has been suggested that these compounds play an ecological role in seed dispersal. Because they are used in the pharmacological, food and pesticide industries, much attention has been paid on knowing how their accumulation is controlled, both in the fruit and in cell cultures. Such control involves the processes of biosynthesis, conjugation and catabolism. Recent progress has been made on the biosynthetic pathway, and several of the genes coding for biosynthetic enzymes have been cloned and expression studies performed. With regard to catabolism, cumulative evidence supports that capsaicinoids are oxidized in the pepper by peroxidases. Peroxidases are efficient in catalyzing in vitro oxidation of both capsaicin and dihydrocapsaicin. These enzymes are mainly located in placental and the outermost epidermal cell layers of pepper fruits, as occurs with capsaicinoids, and some peroxidases are present in the organelle of capsaicinoid accumulation, that is, the vacuole. Hence, peroxidases are in the right place for this function. The products of capsaicin oxidation by peroxidases have been characterized in vitro, and some of them have been found to appear in vivo in the Capsicum fruit. Details on the kinetics and catalytic cycle for capsaicin oxidation by peroxidases are also discussed.  相似文献   

11.
Cell suspension cultures of chili pepper ( Capsicum annuum L. cv. Tampiqueño 74) displaying differences in their resistance to p -fluorophenylalanine (PFP) and in their contents of capsaicin (the compound which is responsible for the hot taste of chili pepper fruits) were characterized in relation to the activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the levels of free l -phenylalanine, phenolics and the phenylpropanoid acids involved in capsaicin biosynthesis. A nonselected cell line, a sensitive line (CA-02), a moderately resistant cell line (CA-29) and two resistant cell lines (CA-04 and CA-16) were studied. Higher PAL activities and higher levels of phenylalanine and phenolics were found in the PFP-resistant cells even after a minimum of 9 subcultures (15 days each) in the absence of the analog, indicating that the selected trait was stable. PFP-resistant chili pepper cells accumulated higher amounts of capsaicin precursors (cinnamic, caffeic and ferulic acids) than either the nonselected cells or the sensitive cell line. p -Coumaric acid was not detected at significant levels in any of the cell cultures. Overall, accumulation of free phenyl-alanine correlated well with PAL activity, phenolics, phenylpropanoids and capsaicin levels, suggesting an active flow through the phenylpropanoid pathway in PFP-resistant cells of chili pepper.  相似文献   

12.
Despite long-standing plant breeding investments and early successes in genetic engineering, plant viral pathogens still cause major losses in agriculture worldwide. Early transgenic approaches involved the expression of pathogen-derived sequences that provided limited protection against relatively narrow ranges of viral pathotypes. In contrast, this study demonstrates that the ectopic expression of pvr1 , a recessive gene from Capsicum chinense , results in dominant broad-spectrum potyvirus resistance in transgenic tomato plants ( Solanum lycopersicum ). The pvr1 locus in pepper encodes the eukaryotic translation initiation factor eIF4E. Naturally occurring point mutations at this locus result in monogenic recessive broad-spectrum potyvirus resistance that has been globally deployed via plant breeding programmes for more than 50 years. Transgenic tomato progenies that over-expressed the Capsicum pvr1 allele showed dominant resistance to several tobacco etch virus strains and other potyviruses, including pepper mottle virus, a range of protection similar to that observed in pepper homozygous for the pvr1 allele.  相似文献   

13.
Pungency in Capsicum spp. is an important quality trait for pepper breeding. The perception of pungency in pepper is due to the presence of a group of compounds named capsaicinoids, only found within the Capsicum genus. How pungency is controlled at genetic and molecular levels has not been completely elucidated. The use of molecular markers to assess pungency trait is required for molecular breeding, despite the difficulty of development of universal markers for this trait. In this work, a DNA sequence possibly related to pungency with a high similarity to Pun1 locus was studied, and sequence analysis of this homolog revealed a 15?bp deletion in non-pungent pepper accessions. An allele-specific pair of primers was designed and specific fragments of 479?bp from non-pungent and 494?bp from pungent accessions were obtained. Polymorphism of this marker, named MAP1, was tested in a wide range of accessions, belonging to several Capsicum species, including pungent and non-pungent accessions of C. annuum L., and pungent accessions of C. chinense, C. baccatum, C. frutescens, C. pubescens, C. galapagoense, C. eximium, C. tovarii, C. cardenasii, and C. chacoense. All these Capsicum accessions were correctly discriminated. The marker suitability to assess pungency in domesticated and wild Capsicum species was demonstrated, and therefore it will be very useful in marker assisted selection (MAS). Moreover, MAP1 was located in a saturated pepper linkage map and its possible relationship with the Pun1 locus has been discussed. Among the available markers for this complex quality trait, the marker developed in this study is the most universal so far.  相似文献   

14.
The evolution of individual and total contents of capsaicinoids present in Peter peppers (Capsicum annuum var. annuum) at different ripening stages has been studied. Plants were grown in a glasshouse and the new peppers were marked in a temporal space of ten days. The extraction of capsaicinoids was performed by ultrasound‐assisted extraction with MeOH. The capsaicinoids nordihydrocapsaicin (n‐DHC), capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin were analyzed by ultraperformance liquid chromatography (UHPLC)‐fluorescence and identified by UHPLC‐Q‐ToF‐MS. The results indicate that the total capsaicinoids increase in a linear manner from the first point of harvest at ten days (0.283 mg/g FW) up to 90 days, at which point they reach a concentration of 1.301 mg/g FW. The evolution as a percentage of the individual capsaicinoids showed the initial predominance of capsaicin, dihydrocapsaicin, and n‐DHC. Dihydrocapsaicin was the major capsaicinoid up to day 50 of maturation. After 50 days, capsaicin became the major capsaicinoid as the concentration of dihydrocapsaicin fell slightly. The time of harvest of Peter pepper based on the total capsaicinoids content should be performed as late as possible. In any case, harvesting should be performed before overripening of the fruit is observed.  相似文献   

15.
16.
17.
Suspension cultures of Habanero pepper (Capsicum chinense Jacq.) were exposed to salicylic acid or methyl jasmonate to change secondary metabolism. Both treatments led to the accumulation of capsaicinoids and their late biosynthetic intermediate, vanillin. Both elicitors had a positive effect on the activities of phenylalanine ammonia lyase and coumarate O-methyltransferase, but none of them represented the main limiting step for capsaicinoid accumulation since vanillin contents were two orders of magnitude higher than those of capsaicinoids.  相似文献   

18.
Capsaicinoids have been suggested as an aid in identifying Capsicum species. The distribution of seven capsaicinoids and their chemotaxonomic significance were examined within nearly 200 accessions of six Capsicum species. The seven capsaicinoids were separated and quantified using high-performance liquid chromatography. The capsaicinoid profiles were not consistent when examined within a species, therefore they have limited use as a chemotaxonomic indicator. In addition, the generalization that capsaicin and dihydrocapsaicin are always the major capsaicinoids was not true, exceptions were found for some of the accessions studied.  相似文献   

19.
Three populations composed of a total of 215 doubled haploid lines and 151 F2 individuals were used to design an intraspecific consensus map of pepper (Capsicum annuum L.). The individual maps varied from 685 to 1668 cM with 16 to 20 linkage groups (LGs). The alignment of the three individual maps permitted the arrangement of 12 consensus major linkage groups corresponding to the basic chromosome number of pepper and displaying a complex correspondence with the tomato map. The consensus map contained 100 known-function gene markers and 5 loci of agronomic interest (the disease-resistance loci L, pvr2, and Pvr4; the C locus, which determines capsaicin content; and the up locus, controlling the erect habit of the fruits). The locations of three other disease-resistance loci (Tsw, Me3, and Bs3) and the y locus, which determines the yellow fruit colour, were also found on this consensus map thanks to linked markers. Here we report on the first functional detailed map in pepper. The use of candidate gene sequences as genetic markers allowed us to localize four clusters of disease-resistance gene analogues and to establish syntenic relationships with other species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号